



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、算法在信息学奥赛中的应用 (递推法)所谓递推,是指从已知的初始条件出发,依据某种递推关系,逐次推出所要求的各中间结果及最后结果。其中初始条件或是问题本身已经给定,或是通过对问题的分析与化简后确定。可用递推算法求解的题目一般有以下二个特点:(1) 问题可以划分成多个状态;(2) 除初始状态外,其它各个状态都可以用固定的递推关系式来表示。在我们实际解题中,题目不会直接给出递推关系式,而是需要通过分析各种状态,找出递推关系式。递推法应用例1骑士游历:(noip1997tg)设有一个n*m的棋盘(2<=n<=50,2<=m<=50),如下图,在棋盘上任一点有一个中国象棋马,马走
2、的规则为:1.马走日字 2.马只能向右走,即如下图所示:任务1:当N,M 输入之后,找出一条从左下角到右上角的路径。例如:输入 N=4,M=4输出:路径的格式:(1,1)->(2,3)->(4,4) 若不存在路径,则输出"no"任务2:当N,M 给出之后,同时给出马起始的位置和终点的位置,试找出从起点到终点的所有路径的数目。例如:(N=10,M=10),(1,5)(起点),(3,5)(终点)输出:2(即由(1,5)到(3,5)共有2条路径)输入格式:n,m,x1,y1,x2,y2(分别表示n,m,起点坐标,终点坐标)输出格式:路径数目(若不存在从起点到终点的路径
3、,输出0)算法分析:为了研究的方便,我们先将棋盘的横坐标规定为i,纵坐标规定为j,对于一个n×m的棋盘,i的值从1到n,j的值从1到m。棋盘上的任意点都可以用坐标(i,j)表示。对于马的移动方法,我们用K来表示四种移动方向(1,2,3,4);而每种移动方法用偏移值来表示,并将这些偏移值分别保存在数组dx和dy中,如下表 KDxkDyk12122-131241-2 根据马走的规则,马可以由(i-dxk,j-dyk)走到(i,j)。只要马能从(1,1)走到(i-dxk,j-dyk),就一定能走到(i,j),马走的坐标必须保证在棋盘上。我们以(n,m)为起点向左递推,当递推到(i-dxk,
4、j-dyk)的位置是(1,1)时,就找到了一条从(1,1)到(n,m)的路径。我们用一个二维数组a表示棋盘,对于任务一,使用倒推法,从终点(n,m)往左递推, 设初始值an,m为(-1,-1),如果从(i,j)一步能走到(n,m),就将(n,m)存放在ai,j中。如下表,a3,2和a2,3的值是(4,4),表示从这两个点都可以到达坐标(4,4)。从(1,1)可到达(2,3)、(3,2)两个点,所以a1,1存放两个点中的任意一个即可。递推结束以后,如果a1,1值为(0,0)说明不存在路径,否则a1,1值就是马走下一步的坐标,以此递推输出路径。-1,-14,44,42,3 &
5、#160;任务一的源程序:const dx:array1.4of integer=(2,2,1,1); dy:array1.4of integer=(1,-1,2,-2);type map=record x,y:integer; end;var i,j,n,m,k:integer; a:array0.50,0.50of map;begin read(n,m); fillchar(a,sizeof(a),0); an,m.x:=-1;an,m.y:=-1;标记为终点 for i:=n downto 2 do 倒推 for j:=1 to m do if ai,j.x<>0 then
6、for k:=1 to 4 do begin ai-dxk,j-dyk.x:=i; ai-dxk,j-dyk.y:=j; end; if a1,1.x=0 then writeln('no') else begin存在路径 i:=1;j:=1; write('(',i,',',j,')'); while ai,j.x<>-1 dobegin k:=i;i:=ai,j.x;j:=ak,j.y; write('->(',i,',',j,')'); end; end;en
7、d.对于任务二,也可以使用递推法,用数组Ai,j存放从起点(x1,y1)到(i,j)的路径总数,按同样的方法从左向右递推,一直递推到(x2,y2),ax2,y2即为所求的解。源程序(略)在上面的例题中,递推过程中的某个状态只与前面的一个状态有关,递推关系并不复杂,如果在递推中的某个状态与前面的所有状态都有关,就不容易找出递推关系式,这就需要我们对实际问题进行分析与归纳,从中找到突破口,总结出递推关系式。我们可以按以下四个步骤去分析:(1)细心的观察;(2)丰富的联想;(3)不断地尝试;(4)总结出递推关系式。下面我们再看一个复杂点的例子。例2、栈(noip2003pj)题目大意:求n个数通过栈
8、后的排列总数。(1n18)如输入 3 输出 5算法分析:先模拟入栈、出栈操作,看看能否找出规律,我们用f(n)表示n个数通过栈操作后的排列总数,当n很小时,很容易模拟出f(1)=1;f(2)=2;f(3)=5,通过观察,看不出它们之间的递推关系,我们再分析N=4的情况,假设入栈前的排列为“4321”,按第一个数“4”在出栈后的位置进行分情况讨论:(1) 若“4”最先输出,刚好与N=3相同,总数为f(3);(2) 若“4”第二个输出,则在“4”的前只能是“1”,“23”在“4”的后面,这时可以分别看作是N=1和N=2时的二种情况,排列数分别为f(1)和f(2),所以此时的总数为f(1)*f(2)
9、;(3) 若“4”第三个输出,则“4”的前面二个数为“12”,后面一个数为“3”,组成的排列总数为f(2)*f(1);(4) 若“4”第四个输出,与情况(1)相同,总数为f(3);所以有:f(4)=f(3)+f(1)*f(2)+f(2)*f(1)+f(3);若设0个数通过栈后的排列总数为:f(0)=1;上式可变为:f(4)=f(0)*f(3)+f(1)*f(2)+f(2)*f(1)+f(3)*f(0);再进一步推导,不难推出递推式:f(n)=f(0)*f(n-1)+f(1)*f(n-2)+f(n-1)*f(0);即f(n)= (n>=1)初始值:f(0)=1;有了以上递推式,就很容易用递推法写出程序。var a:array0.18of longint; n,i,j:integer;begin readln(n); fillchar(a,sizeof(a),0); a0:=1; for i
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 元宇宙技术与应用知到课后答案智慧树章节测试答案2025年春中国科学技术大学
- 2025合同管理专员职责描述书
- 发票临时增量合同范本
- 钨钢销售合作合同范本
- 彩钢屋面合同范本
- 2024年南通市海门区教体系统招聘教师真题
- 第七单元 小熊开店 教案2024-2025学年数学二年级上册-北师大版
- 销售代理合同(2025年版)-@-1
- 2024年海门农村商业银行招聘真题
- 2024年安徽六安技师学院专任教师招聘真题
- 早产儿脑室内出血预防专家共识(2025)解读 2
- 2025年保安员职业技能竞赛理论考试题库(含答案)
- 生锈与防绣课件
- 5.1 根本政治制度(教学设计)-2024-2025学年统编版道德与法治八年级下册
- 2025届江苏省南京市高三语文一模作文题目审题立意及高分范文:弯道与陡坡
- 《2025年拍卖师职业资格考试模拟试题与解析》
- 设备调试面试试题及答案
- 浙江绍兴职业技术学院招聘真题2024
- 2025年高考解密汇编 英语解密之单词辨析
- 2025年春季学期形势与政策第二讲-中国经济行稳致远讲稿
- 湖北省武汉市2024-2025学年高三下学期2月调研考试英语试题(含解析无听力原文及音频)
评论
0/150
提交评论