北师大版数学九年级下册2.4 第1课时 图形面积的最大值 教案2_第1页
北师大版数学九年级下册2.4 第1课时 图形面积的最大值 教案2_第2页
北师大版数学九年级下册2.4 第1课时 图形面积的最大值 教案2_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教育精选 2.4 二次函数与一元二次方程第1课时 图形面积的最大值教学思路(纠错栏)教学思路(纠错栏)教学目标:1、会利用二次函数的知识解决面积最值问题2、经过面积、利润等最值问题的教学,学会分析问题,解决问题的方法,并总结和积累解题经验教学重点:利用二次函数求实际问题的最值预设难点:对实际问题中数量关系的分析 预习导航 一、链接:(1)在二次函数()中,当>0时,有最 值,最值为 ;当<0时,有最 值,最值为 .(2)二次函数y=(x-12)2+8中,当x= 时,函数有最 值为 二、导读在21.1问题1(P2)中,要使围成的水面面积最大,那么它的长应是多少?它的最大面积是多少?分

2、析:这是一个求最值的问题。要想解决这个问题,就要首先将实际问题转化成数学问题。在前面的教学中我们已经知道,这个问题中的水面长x与面积S之间的满足函数关系式S=-x2+20x。通过配方,得到S=-(x-10)2+100。由此可以看出,这个函数的图象是一条开口向下的抛物线,其顶点坐标是(10,100)。所以,当x=10m时,函数取得最大值,为S最大值=100(m2)。所以,当围成的矩形水面长为10m,宽为10m时,它的面积最大,最大面积是100 m2。 合作探究 问题:某商场的一批衬衣现在的售价是60 元,每星期可买出300件,市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件;每降价1

3、元,每星期可多卖出20件,已知该衬衣的进价为40元,如何定价才能使利润最大?问题中定价有几种可能?涨价与降价的结果一样吗?设每件衬衣涨价x元,获得的利润为y元,则定价 元 ,每件利润为 元 ,每星期少卖 件,实际卖出 件。所以Y= 。(0<X<30)何时有最大利润,最大利润为多少元?设每件衬衣降价x元,获得的利润为y元,则定价为 元 ,每件利润为 元 ,每星期多卖 件,实际卖出 件。所以Y= 。(0<X<20)何时有最大利润,最大利润为多少元?比较以上两种可能,衬衣定价多少元时,才能使利润最大? 归纳反思 总结得出求最值问题的一般步骤:(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方法求出二次函数的最值。 达标检测 1、用长为6m的铁丝做成一个边长为xm的矩形,设矩形面积是ym2,,则y与x之间函数关系式为 ,当边长为 时矩形面积最大.2、蓝天汽车出租公司有200辆出租车,市场调查表明:当每辆车的日租金为300元时可全部租出;当每辆车的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论