版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、教育精选第一章 特殊平行四边形 总分120分120分钟 一选择题(共8小题,每题3分)1对角线相等且互相平分的四边形是()A一般四边形B平行四边形C矩形D菱形2下列说法中不能判定四边形是矩形的是()A四个角都相等的四边形B有一个角为90°的平行四边形C对角线相等的平行四边形D对角线互相平分的四边形3已知,在等腰ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是()A任意四边形B矩形C菱形D正方形4在平行四边形ABCD中,增加一个条件能使它成为矩形,则增加的条件是()A对角线互相平分BAB=BCCAB=ACDA+C=180°5如图
2、,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是()A2BC1D6下列条件中,不能判定四边形ABCD为菱形的是()AACBD,AC与BD互相平分BAB=BC=CD=DACAB=BC,AD=CD,ACBDDAB=CD,AD=BC,ACBD7已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是()AACBDBAC=BDCAC=BD且ACBDDAC平分BAD8ABC中,C=90°,点O为ABC三条角平分线的交点,ODBC于D,OEAC于E,OFAB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()
3、A2cm,2cm,2cmB3cm,3cm,3cmC4cm,4cm,4cmD2cm,3cm,5cm二填空题(共6小题,每题3分)9如图,在四边形ABCD中,ADBC,且AD=BC,若再补充一个条件,如A=_度时,就能推出四边形ABCD是矩形10如图,已知MNPQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是_11如图,在四边形ABCD中,ADC=ABC=90°,AD=CD,DPAB于P若四边形ABCD的面积是18,则DP的长是_12在四边形ABCD中,A=B=C=D,则四边形ABCD是_13一组邻边相等的_是正方形,有一个角
4、是_角的菱形是正方形14如图,在ABC中,点D是边BC上一动点,DEAC,DFAB,对ABC及线段AD添加条件_使得四边形AEFD是正方形三解答题(共11小题)15(6分)如图,CAE是ABC的外角,AD平分EAC,且ADBC过点C作CGAD,垂足为G,AF是BC边上的中线,连接FG(1)求证:AC=FG(2)当ACFG时,ABC应是怎样的三角形?为什么?16(6分)如图,以ABC的三边为边在BC的同侧分别作三个等边三角形:ABD,BCE,ACF,请解答下列问题:(1)求证:四边形AFED是平行四边形;(2)当ABC满足什么条件时,四边形AFED是矩形?(3)当ABC满足什么条件时,四边形AF
5、ED是菱形?(4)对于任意ABC,AFED是否总存在?17(6分)如图,BC是等腰三角形BED底边DE上的高,四边形ABEC是平行四边形判断四边形ABCD的形状,并说明理由18(6分)如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F(1)求证:AC=BE;(2)若AFC=2D,连接AC,BE求证:四边形ABEC是矩形19(6分)已知:如图,在ABC中,AB=AC,M是BC的中点,MDAB,MEAC,DFAC,EGAB,垂足分别为点D、E、F、G,DF、EG相交于点P判断四边形MDPE的形状,并说明理由20(8分)如图:在平行四边形ABCD中,AC的垂直平分线分
6、别交CD、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由21(8分)如图所示,ABCD的对角线AC的垂直平分线EF与AD、BC、AC分别交于点E、F、O,连接AF,EC,则四边形AFCE是菱形吗?为什么?22(8分)在ABC中,点O是AC边上一动点,点P在BC延长线上,过点O的直线DEBC交ACB与ACP的平分线于点D、E(1)点O在什么位置时,四边形ADCE是矩形?说明理由(2)在(1)的条件下,当AC与BC满足什么条件时,四边形ADCE是正方形?为什么?23(8分)如图,ABC中,点O是边AC上一个动点,过O作直线MNBC设MN交ACB的平分线于点E,交ACB的外角
7、平分线于点F(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由(3)当点O在边AC上运动到何处,且ABC满足什么条件时,四边形AECF是正方形?24(8分)如图,ABC中,点O是AC边上的一个动点,过点O作直线MNBC,交ACB的平分线于点E,交ACB的外角平分线于点F(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当ABC满足什么条件时,四边形AECF会是正方形25(8分)(1)如图矩形ABCD的对角线AC、BD交于点O,过点D作DPOC,且DP=OC,连接CP,
8、判断四边形CODP的形状并说明理由(2)如果题目中的矩形变为菱形,结论应变为什么?说明理由(3)如果题目中的矩形变为正方形,结论又应变为什么?说明理由。第十九章矩形,菱形与正方形章末测试(二)参考答案与试题解析一选择题(共8小题)1对角线相等且互相平分的四边形是()A一般四边形B平行四边形C矩形D菱形考点:矩形的判定分析:根据矩形的判定(矩形的对角线相等且互相平分)可得C正确解答:解:因为对角线互相平分且相等的四边形是矩形,所以C正确,故选C点评:本题考查的是矩形的判定定理(矩形的对角线相等且互相平分),难度简单2下列说法中不能判定四边形是矩形的是()A四个角都相等的四边形B有一个角为90
9、176;的平行四边形C对角线相等的平行四边形D对角线互相平分的四边形考点:矩形的判定专题:常规题型分析:矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形据此判断解答:解:根据矩形的判定,可得A、B、C可判定四边形为矩形,D不能故选D点评:本题考查的是矩形的判定以及矩形的定理,难度简单3已知,在等腰ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是()A任意四边形B矩形C菱形D正方形考点:矩形的判定分析:由一组对边平行且相等可得其为平行四边形,再由一角为90
10、6;且邻边不等可得其为矩形解答:解:如图所示,AC=AE,AB=AD四边形BCDE为平行四边形,AB=AE,AEB=ABE,BAC+ABC+ACB=180°ABC=ACBABC+EBA=90°四边形BCDE为矩形故选B点评:熟练掌握矩形的判定,会证明一个四边形是矩形所满足的条件4在平行四边形ABCD中,增加一个条件能使它成为矩形,则增加的条件是()A对角线互相平分BAB=BCCAB=ACDA+C=180°考点:矩形的判定分析:根据矩形的判定(有一个角是直角的平行四边形是矩形),所以在平行四边形的基础上,只要满足一个角为直角即可解答:解:答案D中A与C为对角,A=C
11、,又A+C=180°,A=C=90°,又四边形为平行四边形,所以可得其为矩形;故该选项正确,故选D点评:本题考查了矩形的判定,矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形5如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是()A2BC1D考点:菱形的判定与性质;含30度角的直角三角形专题:计算题分析:因为在直角三角形中30度角对应的直角边是斜边的一半,已知菱形的高为1,可得边长为2,所以面积为2解答:解:因为在直角三角形中30度角对应的直角边是斜边
12、的一半,在题目中的菱形中,已知菱形的高为1,可得边长为2,所以面积为2故选:A点评:本题考查了菱形的判定与性质,属于基础题,关键是掌握在直角三角形中30度角对应的直角边是斜边的一半6下列条件中,不能判定四边形ABCD为菱形的是()AACBD,AC与BD互相平分 BAB=BC=CD=DACAB=BC,AD=CD,ACBD DAB=CD,AD=BC,ACBD考点:菱形的判定分析:直接利用菱形的判定定理求解即可求得答案,注意掌握排除法在选择题中的应用解答:解:A、AC与BD互相平分,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故正确;B、AB=BC=CD=DA,四边形ABCD为菱形,
13、故正确;C、AB=BC,AD=CD,ACBD,不能判定四边形ABCD是平行四边形,故错误;D、AB=CD,AD=BC,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故正确;故选C点评:此题考查了菱形的判定此题比较简单,注意熟记定理是解此题的关键7已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是()AACBDBAC=BDCAC=BD且ACBDDAC平分BAD考点:正方形的判定分析:由四边形ABCD是平行四边形,ACBD,可判定四边形ABCD是菱形,又由AC=BD,即可判定四边形ABCD是正方形注意掌握排除法在选择题中的应用解答:解:A、四边形ABCD是平行四边形
14、,ACBD,四边形ABCD是菱形,故错误;B、四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误;C、四边形ABCD是平行四边形,ACBD,四边形ABCD是菱形,AC=BD,四边形ABCD是正方形,故正确;D、四边形ABCD是平行四边形,AC平分BAD,四边形ABCD是矩形,故错误故选C点评:此题考查了正方形的判定此题比较简单,注意熟记判定定理是解此题的关键8ABC中,C=90°,点O为ABC三条角平分线的交点,ODBC于D,OEAC于E,OFAB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()A2cm,2cm,2cm B
15、3cm,3cm,3cmC4cm,4cm,4cmD2cm,3cm,5cm考点:正方形的判定与性质分析:连接OA,OB,OC,利用角的平分线上的点到角的两边的距离相等可知BDOBFO,CDOCEO,AEOAFO,BD=BF,CD=CE,AE=AF,又因为点O到三边AB、AC、BC的距离是CD,AB=8CD+6CD=10,解得CD=2,所以点O到三边AB、AC、BC的距离为2解答:解:连接OA,OB,OC,则BDOBFO,CDOCEO,AEOAFO,BD=BF,CD=CE,AE=AF,又C=90,ODBC于D,OEAC于E,且O为ABC三条角平分线的交点四边形OECD是正方形,则点O到三边AB、AC
16、、BC的距离=CD,AB=8CD+6CD=2CD+14,又根据勾股定理可得:AB=10,即2CD+14=10CD=2,即点O到三边AB、AC、BC的距离为2cm故选A点评:本题主要考查垂直平分线上的点到线段两段的距离相等的性质和边的和差关系二填空题(共6小题)9如图,在四边形ABCD中,ADBC,且AD=BC,若再补充一个条件,如A=90度时,就能推出四边形ABCD是矩形考点:矩形的判定专题:推理填空题分析:矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形,据此分析可得解答:解:四边形ABCD中,ADBC,且
17、AD=BC,四边形ABCD为平行四边形,有一个角为90°的平行四边形是矩形,添加A=90°就能推出四边形ABCD是矩形,故答案为:90点评:本题考查了矩形的判定,解题的关键是了解有一个角是直角的平行四边形是矩形10如图,已知MNPQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是矩形考点:矩形的判定;平行线的性质专题:几何图形问题;推理填空题分析:首先推出BAC=DCA,继而推出ABCD;推出BCA=DAC,进而推出ADCB,因此四边形ABCD平行四边形,再证明ABC=90°,可得平行四边形ABCD是矩形
18、解答:证明:MNPQ,MAC=ACQ、ACP=NAC,AB、CD分别平分MAC和ACQ,BAC=MAC、DCA=ACQ,又MAC=ACQ,BAC=DCA,ABCD,AD、CB分别平分ACP和NAC,BCA=ACP、DAC=NAC,又ACP=NAC,BCA=DAC,ADCB,又ABCD,四边形ABCD平行四边形,BAC=MAC,ACB=ACP,又MAC+ACP=180°,BAC+ACP=90°,ABC=90°,平行四边形ABCD是矩形,故答案为:矩形点评:此题主要考查了矩形的判定,关键是掌握有一个角是直角的平行四边形是矩形,难度不大,重点考查基本定理的应用11如图,
19、在四边形ABCD中,ADC=ABC=90°,AD=CD,DPAB于P若四边形ABCD的面积是18,则DP的长是3考点:正方形的判定与性质;全等三角形的判定与性质分析:过点D作DEDP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出ADP=CDE,再利用“角角边”证明ADP和CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可解答:解:如图,过点D作DEDP交BC的延长线于E,ADC=ABC=90°,四边形DPBE是矩形,CDE+CDP=90°,ADC=90°,ADP
20、+CDP=90°,ADP=CDE,DPAB,APD=90°,APD=E=90°,在ADP和CDE中,ADPCDE(AAS),DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,矩形DPBE是正方形,DP=3故答案为:3点评:本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键12在四边形ABCD中,A=B=C=D,则四边形ABCD是矩形考点:正方形的判定分析:根据四边形的内角和为360就可以求出就可以求出,A=B=C=D=90°,从而得出四边形ABCD是矩形解答:解:A+B+C+D=36
21、0°,且A=B=C=D,A=B=C=D=90°四边形ABCD是矩形故答案为:矩形点评:本题考查了四边形内角和定理的运用,矩形的判定的运用,解答时求出每个角为90°是关键13一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形考点:正方形的判定分析:根据正方形的定义:一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形,即可求得答案解答:解:一组邻边相等的矩形是正方形,有一个角是直角的菱形是正方形故答案为:矩形,直点评:此题考查了正方形的定义此题比较简单,注意熟记正方形的定义是解此题的关键14如图,在ABC中,点D是边BC上一动点,DEAC,DFAB,对AB
22、C及线段AD添加条件ABC是等腰直角三角形,AD是角平分线使得四边形AEFD是正方形考点:正方形的判定分析:由DEAC,DFAB,易得四边形AEDF是平行四边形,由BAC=90°,可得四边形AEDF是矩形,又由邻边相等,即可判定四边形AEFD是正方形解答:解:添加条件:ABC是等腰直角三角形,AD是角平分线理由:DEAC,DFAB,四边形AEDF是平行四边形,ABC是等腰直角三角形,BAC=90°,四边形AEDF是矩形,AD是角平分线,ADE=DAE=45°,AE=DE,四边形AEFD是正方形故答案为:ABC是等腰直角三角形,AD是角平分线点评:此题考查了正方形的
23、判定此题难度适中,注意掌握数形结合思想的应用三解答题(共11小题)15如图,CAE是ABC的外角,AD平分EAC,且ADBC过点C作CGAD,垂足为G,AF是BC边上的中线,连接FG(1)求证:AC=FG(2)当ACFG时,ABC应是怎样的三角形?为什么?考点:矩形的判定与性质;等腰三角形的判定与性质;等腰直角三角形专题:证明题分析:先根据题意推理出四边形AFCG是矩形,然后根据矩形的性质得到对角线相等;由第一问的结论和ACFG得到四边形AFCG是正方形,然后即可得到ABC是等腰直角三角形解答:(1)证明:AD平分EAC,且ADBC,ABC=EAD=CAD=ACB,AB=AC;AF是BC边上的
24、中线,AFBC,CGAD,ADBC,CGBC,AFCG,四边形AFCG是平行四边形,AFC=90°,四边形AFCG是矩形;AC=FG(2)解:当ACFG时,ABC是等腰直角三角形理由如下:四边形AFCG是矩形,四边形AFCG是正方形,ACB=45°,AB=AC,ABC是等腰直角三角形点评:该题目考查了矩形的判定和性质、正方形的判定和性质、等腰三角形的性质,知识点比较多,注意解答的思路要清晰16如图,以ABC的三边为边在BC的同侧分别作三个等边三角形:ABD,BCE,ACF,请解答下列问题:(1)求证:四边形AFED是平行四边形;(2)当ABC满足什么条件时,四边形AFED是
25、矩形?(3)当ABC满足什么条件时,四边形AFED是菱形?(4)对于任意ABC,AFED是否总存在?考点:矩形的判定;平行四边形的判定;菱形的判定分析:(1)当一个图中出现2个等边三角形时就可以找出一对全等三角形,可得出一对对边相等,进而往四边形ADEF是平行四边形方面进行证明(2)四边形ADEF是矩形,那么它的每个内角是90°,那么可利用在点A处组成的周角算出BAC的度数(3)AB=AC,根据菱形的判定推出即可;(4)当BAC=60°时四边形不存在解答:(1)证明:四边形ADEF是平行四边形理由:ABD,BEC都是等边三角形,BD=AB,BE=BC,DBA=EBC=60&
26、#176;,DBE=60°EBA,ABC=60°EBA,DBE=ABC,DBEABC,DE=AC,又ACF是等边三角形,AC=AF,DE=AF同理可得:ABCFEC,即EF=AB=DADE=AF,DA=EF,四边形ADEF为平行四边形;(2)解:若四边形ADEF为矩形,则DAF=90°,DAB=FAC=60°,BAC=360°DABFACDAF=360°60°60°90°=150°,当ABC满足BAC=150°时,四边形ADEF是矩形;(3)解:当BAC60°且AB=AC时,
27、四边形AFED是菱形,此时AB=AC=AF=AD,四边形AFED是平行四边形,四边形AFED是菱形;(4)解:当BAC=60°时,以A,D,E,F为顶点的四边形不存在点评:本题考查了平行四边形的判定,矩形的判定,菱形的判定,等边三角形的性质的应用,本题主要应用的知识点为:两组对边分别相等的四边形是平行四边形,一个角是直角的平行四边形是矩形17如图,BC是等腰三角形BED底边DE上的高,四边形ABEC是平行四边形判断四边形ABCD的形状,并说明理由考点:矩形的判定;等腰三角形的性质;平行四边形的性质分析:根据平行四边形的性质可以证得AB与CD平行且相等,则四边形ABCD是平行四边形,再
28、证得对角线相等即可证得解答:解:四边形ABCD是矩形,理由:BC是等腰BED底边ED上的高,EC=CD,四边形ABEC是平行四边形,ABCD,AB=CE=CD,AC=BE,四边形ABCD是平行四边形AC=BE,BE=BD,AC=BD,四边形ABCD是矩形点评:本题主要考查了平行四边形的性质以及矩形的判定,关键是掌握对角线相等的平行四边形是矩形18如图,将平行四边形ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F(1)求证:AC=BE;(2)若AFC=2D,连接AC,BE求证:四边形ABEC是矩形考点:矩形的判定;平行四边形的性质专题:几何图形问题;证明题分析:(1)根据平行四边
29、形的性质得到ABCD,AB=CD,然后根据CE=DC,得到AB=EC,ABEC,利用一组对边平行且相等的四边形是平行四边形判断即可;(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证解答:证明:(1)四边形ABCD是平行四边形,ABCD,AB=CD,CE=DC,AB=EC,ABEC,四边形ABEC是平行四边形,AC=BE;(2)AB=EC,ABEC,四边形ABEC是平行四边形,FA=FE,FB=FC,四边形ABCD是平行四边形,ABC=D,又AFC=2D,AFC=2ABC,AFC=ABC+BAF,ABC=BAF,FA=FB,FA=F
30、E=FB=FC,AE=BC,四边形ABEC是矩形点评:此题考查的知识点是平行四边形的判定与性质和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形19已知:如图,在ABC中,AB=AC,M是BC的中点,MDAB,MEAC,DFAC,EGAB,垂足分别为点D、E、F、G,DF、EG相交于点P判断四边形MDPE的形状,并说明理由考点:菱形的判定专题:证明题分析:根据MDAB,MEAC,DFAC,EGAB,先推得四边形MDPE为平行四形,再根据AB=AC,M是BC的中点,得到MD=ME,由“有一组邻边相等的平行四边形是菱形”证明解答:证明:四边形MDPE为
31、菱形,理由:连接AMMEAC,DFAC,MEDF,MDAB,EGAB,MDEG,四边形MDPE是平行四边形;AB=AC,M是BC的中点,AM是角平分线,MD=ME,四边形MDPE为菱形点评:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:定义;四边相等;对角线互相垂直平分20如图:在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于E、F两点,交AC于O点,试判断四边形AECF的形状,并说明理由考点:菱形的判定;平行四边形的性质分析:根据平行四边形性质推出ADBC,得出DAO=ACF,AEO=CFO,根据AAS证AEOCFO,推出OE=OF即可解答:证明:四边形AECF的形
32、状是菱形,理由是:平行四边形ABCD,ADBC,DAO=ACF,AEO=CFO,EF过AC的中点O,OA=OC,在AEO和CFO中,AEOCFO(AAS),OE=OF,OA=CO,四边形AECF是平行四边形,EFAC,四边形AECF是菱形点评:本题考查了平行线性质,平行四边形的性质,矩形、菱形的判定等知识点的应用,能熟练地运用性质进行推理是解此题的关键,题型较好,具有一定的代表性,但难度不大21如图所示,ABCD的对角线AC的垂直平分线EF与AD、BC、AC分别交于点E、F、O,连接AF,EC,则四边形AFCE是菱形吗?为什么?考点:菱形的判定专题:证明题分析:要证四边形AFCE是菱形,只需通
33、过定义证明其四边相等即可解答:解:四边形AFCE是菱形点E在AC的垂直平分线上,AE=EC同理,AF=FC1=3又AEFC,1=22=3又COEF,COF=COE=90°,COFCOECF=CEAE=EC=CF=FA四边形AFCE是菱形点评:菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:定义;四边相等;对角线互相垂直平分22在ABC中,点O是AC边上一动点,点P在BC延长线上,过点O的直线DEBC交ACB与ACP的平分线于点D、E(1)点O在什么位置时,四边形ADCE是矩形?说明理由(2)在(1)的条件下,当AC与BC满足什么条件时,四边形ADCE是正方形?为什么?考
34、点:正方形的判定;矩形的判定分析:(1)根据CE平分ACP,DEBC,找到相等的角,即OEC=ECP,再根据等边对等角得OE=OC,同理OC=OD,可得EO=DO,再有条件AO=CO,可得到四边形ADCE为平行四边形,再证明DCE=90°,可利用矩形的判定解答,即有一个内角是直角的平行四边形是矩形;(2)利用正方形的判定得出DEAC,进而得出答案解答:解:(1)当O为AC的中点则四边形ADCE是矩形;理由:CE平分ACP,ACE=PCE,DEBC,OEC=ECP,OEC=OCE,OE=OC,同理,OC=OD,OD=OEAO=CO,EO=DO,四边形ADCE为平行四边形,DC、CE是A
35、CB与ACP的平分线,DCE=90°,四边形AECF是矩形;(2)当ACBC时,四边形ADCE是正方形理由:BCA=90°,DECB,DOA=90°,则DEAC,矩形AECF是正方形点评:此题主要考查了平行四边形的判定,矩形的判定以及正方形的判定等知识,解决问题的关键是证明EO=DO和DCF=90°23如图,ABC中,点O是边AC上一个动点,过O作直线MNBC设MN交ACB的平分线于点E,交ACB的外角平分线于点F(1)求证:OE=OF;(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由(3)当点O在边AC上运动到何处,且ABC满足
36、什么条件时,四边形AECF是正方形?考点:正方形的判定;矩形的判定分析:(1)根据平行线的性质以及角平分线的性质得出1=2,3=4,进而得出答案;(2)根据AO=CO,EO=FO可得四边形AECF平行四边形,再证明ECF=90°利用矩形的判定得出即可;(3)当点O在边AC上运动到AC中点时,若ACB=90°,四边形AECF为正方形,首先证明为矩形,再证明ACEF根据对角线互相垂直的矩形是正方形可得结论解答:(1)证明:MN交ACB的平分线于点E,交ACB的外角平分线于点F,2=5,4=6,MNBC,1=5,3=6,1=2,3=4,EO=CO,FO=CO,OE=OF;(2)当
37、点O在边AC上运动到AC中点时,四边形AECF是矩形证明:当O为AC的中点时,AO=CO,EO=FO,四边形AECF是平行四边形,ECF=90°,平行四边形AECF是矩形(3)当点O在边AC上运动到AC中点时,若ACB=90°,四边形AECF为正方形证明:由(2)可得点O在边AC上运动到AC中点时平行四边形AECF是矩形,ACB=90°,2=45°,平行四边形AECF是矩形,EO=CO,1=2=45°,MOC=90°,ACEF,四边形AECF是正方形点评:此题主要考查了矩形和正方形的判定,关键是掌握矩形的定义:有一个角是直角的平行四边形是矩形24如图,ABC中,点O是AC边上的一个动点,过点O作直线MNBC,交ACB的平分线于点E,交ACB的外角平分线于点F(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;(3)在(2)的条件下,当ABC满足什么条件时,四边形AECF会是正方形考点:正方形的判定;矩形的判定分析:(1)利用角平分线的性质的得出,1=2,进而得出,3=2,即可得出OE与OF的大小关系;(2)首先的很粗四边形AECF是平行四边形,进而得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度电器行业广告发布与推广合同2篇
- 2024年度知识产权许可合同:权利人与使用方关于知识产权使用的协议
- 2024年度辣椒产业区块链应用合同协议范本3篇
- 2024城市广场照明系统安装合同
- 2024年三轮车买卖法律协议样本版B版
- 2024年度企业内退员工生育保险合同2篇
- 2024年建筑工程招投标与合同条款解析3篇
- 2024年企业安全生产责任协议3篇
- 2024年学生课后活动安排合同3篇
- 农业设施建设项目工长合同
- 学习培训类APP产品创业计划书-大学生创新创业计划书
- 学校小农场打造方案
- 客服招聘策划方案
- 临床护理问题分析
- 机电安装工程文明施工环境保护方案
- 行政组织学课件
- 人工智能导论实训报告总结
- 手术室中的急救药物管理与应用
- 2024年中华棉花集团有限公司招聘笔试参考题库含答案解析
- 2024年广西北部湾港集团招聘笔试参考题库含答案解析
- 业务系统运维方案
评论
0/150
提交评论