高等数学上学期期末考试试卷及答案四份[001]_第1页
高等数学上学期期末考试试卷及答案四份[001]_第2页
高等数学上学期期末考试试卷及答案四份[001]_第3页
高等数学上学期期末考试试卷及答案四份[001]_第4页
高等数学上学期期末考试试卷及答案四份[001]_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高等数学试卷(B卷)答案及评分标准2004-2005年度第一学期科目: 高等数学I 班级: 姓名: 学号: 成绩: 一、填空题()1、的定义域是_ 2、3、4、如果函数,在处有极值,则5、二、单项选择题()1、当时,下列变量中及等价的无穷小量是( )A . B . C . D . 2、。A BC D 3、设在上函数满足条件则曲线在该区间上( ) A. 上升且凹的 B. 上升且凸的 C. 下降且凹的 D. 下降且凸的4、设函数具有连续的导数,则以下等式中错误的是( ) A. B. C. D. 5、反常积分( ) A. 发散 B. 收敛于1 C. 收敛于 D. 收敛于三、算题()1、求极限 2、求

2、3、求曲线在当处的切线方程和法线方程4、已知函数,计算 5、求积分6、求积分7、计算曲线及轴围成的图形面积,并求该图形绕y轴所产生的旋转体体积。8、计算星型线的全长. 四、求函数求的单调区间、极值点、凹凸区间、拐点()五、设, 证明:方程在0,1上有且仅有一根()六、设f (x)连续, 计算 ()七、 , 计算:()答案:一、 填空题1、(2,3)(3,+) 2、2 3、 4、2 5、二、1、 D 2、A 3、B 4、A 5、C3、 计算题1、解:= 2 42、解:=3、解: 当曲线过点, 由于, 4所以, 当处的切线方程和法线方程分别为: 1 14、 解:解: 令, 则: 1解: 令, 则:

3、 15、 令, 6、解: =7、解:面积 2 体积微分元 1 所求体积 38、解: 弧微分 2弧长 4四、解:1由上可知:函数的单调增区间为: (-,-2),(2,+); 函数的单调减区间为:(-2,2) 2函数的极大值点:(-2,26),极小值点(2,-6) 1凹区间为:(0,+),凸区间为:(-,0) 1拐点为:(0,10) 五、证: 构造函数, 函数在0,1上连续,在区间内可导 1由连续函数的零点定理知,存在在(0,1)内使 2又因为所以函数在(0,1)的零点唯一. 2原命题得证.六、解: 令:, 2七、解:当 2当高等数学IV1课程考试试卷(A卷) 学院 专业 班级 学号 姓名 题号一

4、二三四五六七八总分阅卷教师得分得分一、选择题(每小题3 分,共12分)1、设使存在的最高阶数为( )(A) (B) (C) (D) 2、函数有极大值点( ) (A) (B) (C) (D) 3、已知函数的一个原函数是,则( ) (A) (B) (C) (D) 4、是函数的 ( )(A)连续点 (B)可去间断点 (C)第一类不可去间断点 (D)第二类间断点得分二、填空题(每小题3 分,共12分)1、函数的图形的拐点是 。2、曲线的渐进线是 。3、设,则 。4、 。得分三、求下列极限(每小题6分,共12分)。1、。2、。得分四、计算下列微分或导数(每小题6分,共18分)。1、,求。2、。3、设 ,

5、求。得分五、计算下列积分(每小题6分,共18分)。1、。2、求。3、。得分六、若,证明不等式(8分)。得分七、 求: (1) D的面积S; (2) D绕轴旋转一周所得的旋转体体积。(10分)得分八、求微分方程的通解(10分)。高等数学IV1统考试题(A)答案及评分标准一、 选择(每题3分,共12分)、B、D、A、C二、 填空(每题3分,共12分)、 4、三、计算下列极限(每小题6分,共12分)。1、解:原式= (2分) (4分) (6分)2、 解:原式= (3分) (3分)四、 求下列导数和微分(每小题6分,共18分)。1、解: (3分) (6分)、解: (2分) (4分)= (6分)、解:解

6、: (3分) (6分) 五、计算下列积分(每小题6分,共18分)。1、解: (3分) (6分)2、解: (6分)3、解:令, (1分)原式= (6分)六、解:即证 , (1分)令 , (2分) , (4分)当时, , 且, . (6分) 且 (8分)七、解:解: (1分) (1) D=; (5分)(2) 。 (10分)八、解:首先求对应的齐次方程的通解: (1分) (4分)用常数变易法,把变成,即令 ,则有 (5分) (6分)代入到原方程中得 ,两边积分得 (8分) ,故原方程的通解为 (9分) (10分)高等数学A参考答案及评分标准考试科目:高等数学A 上 考试班级: 考试方式: 闭卷 命题

7、教师:一、填空题(将正确答案填在横线上,本大题共4小题,每题4分,共16分)1已知当时,及是等价无穷小,则常数 。2,则 。3微分方程的通解为 。4 。二、选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共4小题,每题4分,共16分)1如果处处可导,则( )。2函数在处连续,且取得极大值,则在处必有( )。3若为的一个原函数,则( )。4微分方程的通解是( )。 三、解答下列各题(本大题共2小题,共14分)1(本小题7分)求极限2(本小题7分)设,求。四、解答下列各题(本大题共4小题,共28分)1(本小题7分),求的极值及在上的最值。2(本小题7分)3(本小题7分),

8、计算。 7分4(本小题7分)求积分。五、解答下列各题(本大题共3小题,共26分)1(本小题9分)求由曲线,轴及该曲线过原点的切线所围成平面图形的面积。2(本小题9分)求微分方程的通解。3(本小题8分)设可导,且,证明。答案:1、 填空题1、 2、 3、 42、 选择题1、 B 2、C 3、D 4、A3、 计算题1、解:= 3分2、解:取对数 2分两边对求导: 5分四、1、解: 2分则,令,解得,所以时,的极大值是;,所以时,的极小值是; 5分,比较得在上的最大值是,最小值是。2、解:令, 5分3、解: 3分4、解: 4分五、1、解:设切点为,则切线方程又切线过原点,将代入得切点,则切线 5分2

9、、解:齐方程的特征方程,特征根齐方程的通解是 4分设非齐次方程的一个特解为,代入原方程解得,故 8分非齐次方程的通解; 3、证明:令,则 3分 8分课程名称: 高等数学A (上) 课程类别: 必修 考试方式: 闭卷 注意事项:1、本试卷满分100分。2、考试时间 120分钟。题号一二三四五六七八得分得分评阅人得分一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。每小题3分,共18分)1. D ;2 C;3 B;4 B; 5 B;6 A。得分二、填空题(每小题3分,共18分) 1. ;2 2 ;3 4 ;5 ;6 得分三、计算下列各题(每小题5分,共

10、30分) 1. 解: (2分) (4分) (5分)2. 已知可导,求解 (4分) (5分)3. 由方程确定,求.解:两边同时求导得: (2分)对上式两边同时求导得:即:所以: (5分) 4 解: (3分) (5分)5 解:设 (2分) (4分) (5分)6 解: (2分) (4分) (5分)得分四设选择合适的,使得处处可导。(本题6分) 解: 因为在处连续,所以有 即 (3分)又因为在处可导,所以有即 (6分)得分五. 设,常数,证明 (本题6分) 解:设 (2分)所以单调减少,而,当时, (5分)即 (6分)六 设函数,讨论函数的单调区间和函数图形的凹凸性得分(本题6分) 解: (2分) 在,所以函数在单调减少 (3分) 在,所以函数在单调增加 (4分) ,所以该函数的图形是凹的 (6分)得分七 解微分方程(本题6分) 解 微分方程变形为 (1分) 令 ,则 (2分) 将上式分离变量两边积分得 (4分) 则 即 (6分)八 设曲线上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论