微积分必考题_第1页
微积分必考题_第2页
微积分必考题_第3页
微积分必考题_第4页
微积分必考题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 微积分(B)上册必考题微积分的必考可能难题是:求极限,求积分,微分方程,证明等式和不等式,应用题(相关变化率,微分方程,元素法求平面图形体积面积弧长和一些物理问题,此处难点在积分和微分方程的求解)一、极限求极限的几个原则:a. 能先求的先求,能化简的化简,能等价无穷小替换就替换b. 洛必达法则c. 泰勒公式无敌后面两种方法要把式子变为分式(可采用倒代换)1.用四则运算求极限对于非未定式,考试有可能表达式看起来很难,但实际上直接带入求极限,别犯傻!2. 用两个重要极限,这里只讲幂指函数极限 幂指函数,且里面极限是1,就可以凑一个“1+”,在用两个重要极限求极限时,若底数化成e指数出现了带有极限

2、变量的乘积项,则可用倒代换化成分式。ó此时,令,就ó,用泰勒公式展开即可。3. 等价无穷小的替换,实际上是泰勒公式的特殊情况,只不过就展开了一项。4. 能求出的极限先求出来(其实也是泰勒公式的展开,只不过就展开了一个常数项而已)óó上面两个等价无穷小替换,下面有一项能先求出来。*先求出来的向在极限过程中与等价无穷小替换一样,必须是一个乘积项5.洛必达法则*用之前,判断未定式!上下项数不多,导数好求。缺点:比如sinx等等永远无法用多项式表示,若遇到上下幂次很高,求导将变得十分复杂。如:三种类型对于,直接就能看出来6.泰勒公式把非多项式函数近似成多项式函数

3、,用泰勒公式之前,先想想是否可以等价无穷小替换。缺点:展开式可能复杂,需要记忆如:下面显然可以用等价无穷小替换,而上面只需要第一项的局部麦克劳林公式即可,需要记住这些:,有关泰勒公式的几个问题:1. o() ó o() ?2. o(x+1)óo(x)?3.o(2x)óo(x)4.?5. ?6. 小心:要在时才=0!想时的分式函数能用泰勒公式展开吗?二、求积分求某函数的原函数后,原函数必须在与这个函数的同定义区间内可微。如f(x)=sgn(x)没有原函数(假设有,在x=0不可微),因此有:每一个有第一类间断点的函数都没有原函数。求积分的几个原则:1.基本类型 2.

4、照方抓药型(相差一个线性函数)3. dx型有sin找cos,没有现 成的cos用半角公式,如:,用半角公式:=4. 第二类换元法,一般换:根号下的,角频率中的,重复项,换元后回带第二类换元法开方出来小心绝对值根式代换:,倒代换(分母阶数较高),最小公倍数根式代换 角频率代换: x=nt5. 分数乘积化为部分分式代数和 二次质因式配方 首先,假分式可以化为真分式6.使用分部积分三个典型的分部积分若被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就考虑设幂函数为u。若被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就考虑设对数函数或反三角函数为u 与出现循环序(每次要把相同的东西往

5、微分符号中凑)除典型分部积分以外,还有这些要分部: 如果换元变成(),变为了典型的分部积分 有一大部分都可以往微分符号中放,如此题中的,别无选择,只能分部 7.观察直接凑微分 8.积化和差公式定积分:几个常用定积分公式*观察积分区间和函数奇偶如,可以分出一个偶函数,剩一个奇函数*直接利用图形面积:,半个单位圆 *把极限式化为积分式:如果插入分点平均:*最常用:当a=0: 再特殊的,b=1,就有它表示曲边梯形面积的代数和,如果求曲边梯形的面积,那么要讨论f(x)与0的关系!以后看到类似的题,可以先把上面的通式写下来,对号入座找f。例:,乘法变代数和?架在e肩膀上!弄出.广义积分:极限符号一定要标

6、出左右才不会出错!看清瑕点(邻域内无界的点),是否为广义积分?一些代数恒等变形:积化和差:角频率不同的函数的积倍角化为平方,一般凑(sec x)2,及d(tanx)如:三、微分方程这里主要看微分方程的类型判断:a.一阶微分方程先可化为,通过上下同除,或凑微分,看看是不是齐次方程齐次方程把放到左边去,再找y的一次项。看是否是一阶线性齐次或非其次方程,或伯努利方程。如果不行,把自变量与函数,重复以上方法试试。如果需要换元,前面积分的换元方法是一种思想。记住,换元是一种工具,不是求解特定题(积分)的套路。例:ó (步骤)ó (步骤第一句话)变成伯努利方程,判型成功利用角频率代换,

7、令xy=u.那么对于ln等利用凑微分解微分方程,把x+y放到左边分子的微分符号中,因为:,所以有了:,然后把(x+y)当做整体b.可降阶的高阶微分方程,观察即可判型:不显含x,就別添x,令不显含y,就別添y,令c.高阶常系数微分方程(齐次,非齐次)齐次,求特征方程的根,一项一项写:有一个单实根r:有一个k重实根r:有一对k重共轭复根: 非齐次,一般,我们只会求二阶的特解:类型一: ,则k取决于是特征方程的几重根类型二:,则k取决于是否为特征方程的根四、相关变化率应用题如何列方程?找所求,找已知,用微分形式表达,再找微分变量之间的关系。例题:分析,求,已知,而,这样,有了:,发现h与dV/dt都

8、已知了。五、等式与不等式的证明几大方法:中值定理,函数的单调性,函数的凸凹性罗尔定理三条件,闭区间连续,开区间可导罗尔定理:两端函数值相等,则必有一点导数值为0拉格朗日中值定理:两点割线斜率等于某一点切线斜率柯西中值定理:函数值的增量比等于某位置导数的比(两个函数)函数的单调性证明不等式:高中方法,较为简单函数的凸凹性证明不等式:注重凸凹性的定义与的关系在不等式中,可以采用如下放缩,估计积分大致范围:,m是区间上的最小值,M最大值*如果证明函数是具体的,如:左右直接相减,用拉格朗日定理后放缩再与0比即可积分中值定理证明设可导,且 求。解法:令.直接用积分中值定理六、图形应用题弧微分曲率 曲率半

9、径1.求平面图形面积:直角坐标,参数方程:以小矩形近似代替,积分变量x,y都可以极坐标方程:以圆扇形近似代替常见的直角坐标方程: 星型线几个常见的极坐标方程: 双纽线,哑铃型 心脏线常见的参数方程:摆线 星型线2.求体积*星型线与其他已经有对称性的线求旋转体时只用求半个部分。如:星型线绕x轴,体积元素为柱壳法:摆线绕y轴,原方法积分限比较易错,此时用柱壳法即可,柱壳法小心绝对值。柱壳法避免了相减的问题,最后与原方法表达式等价。(相当于底面积为ydx或xdy,高为的薄的柱壳)3.弧长直角坐标:参数方程:极坐标方程:七、元素法对物理的应用怎么建系好?一般地,下述规律适用:对于运动,顺着运动方向建系

10、,选择开始有力的地方作为原点。如:抽水做功,水从上往下走。对于压力,顺着压力增大的地方建系,选择开始有力的地方做为原点。其他几章的常用方法:一、导数与微分1. 点导数的定义,包括单侧导数,二阶甚至k阶导数2. 莱布尼茨公式,求u*v的n阶导把二项式展开的几次方改为几阶导,因为uv在乘法中可互换,所以此处u,v也可互换。3.一些高阶导数的公式有些高阶导数求之前要变形为这几个基本导数化为代数和不停地拆平方和变为1,最终用倍角表示4.对数求导法(适用于多个函数相乘和幂指函数)二、导数应用(绘制函数图像)导数等于零的点和不可导点,可能是单调区间的分界点绘制函数图像的几个步骤:1.定义域,奇偶性,周期性,与坐标轴交点2.单调性,凸凹性,求极值点,极值,拐点(列表)极值点:第一、第二充分条件(使用第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论