![简支梁截面抗弯模量计算分析_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/15/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c1.gif)
![简支梁截面抗弯模量计算分析_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/15/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c2.gif)
![简支梁截面抗弯模量计算分析_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/15/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c3.gif)
![简支梁截面抗弯模量计算分析_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-1/15/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c4.gif)
![简支梁截面抗弯模量计算分析_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-1/15/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c/d923d39c-66e4-4db3-a6c1-5d0cc279cc0c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、剪力图与弯矩图弯矩图:(1)梁受集中力或集中力偶作用时,弯矩图为直线,并且在集中力作用处,弯矩发生转折;ahELC在集中力偶作用处,弯矩发生突变,突变量为集中力偶的大小。(2)梁受到均布载荷作用时,弯矩图为抛物线,且抛物线的开口方向与均布载荷的方向一致。(3)梁的两端点若无集中力偶作用,则端点处的弯矩为0;若有集中力偶作用时,贝y弯矩为集中力偶的大小。例7-5图示简支梁,受集中力Fp和集中力偶M=R 作用,试作此梁的弯矩图。1/2解U)求约束反力VMM)"-砒十F右心(h轨£上丫弓=0, 厂 Fp=Q * 兔=-仟(2)作弯矩图 根据上面总结的作图规律町知,AC段和fiC段
2、的弯矩图均为斜直线,因为集中力和集中力偶同时作用在C点,故C处的弯矩既有转折又有究变,所以在C处左右两侧的弯矩值是不同的 点处的弯矩:C点左侧处的弯矩:C点右侧处的弯矩:*01313Afcfi = Fa5 = -Fp 牙=二印iMAdThG = F点-£f占-冲=-兔1MMrB点处的穹矩?Mg =0Ji ri H HF=2尿g=ikN/nt4ini4 in二4mr-3肝r11ncs:求约東反力曲一加物纹(JTfe物绥总结上面例题,可以得到作弯矩图的几点规律:(1)梁受集中力或集中力偶作用时,弯矩图为直线,并且在集中力作用处,弯矩发生转折;在集中力偶作用处,弯矩发生突变,突变量 为集中
3、力偶的大小。(2)梁受到均布载荷作用时,弯矩图为抛物线,且抛物线的开口方向与均布载荷的方向一致。(3)梁的两端点若无集中力偶作用,则端点处的弯矩为0;若有集中力偶作用时,贝y弯矩为集中力偶的大小。四 梁纯弯曲时的强度条件1梁纯弯曲的概念纯弯曲一一梁的横截面上只有弯矩而没有剪力。Q = 0 , M =常数。M2. 梁纯弯曲时横截面上的正应力.梁纯弯曲时的变形特点平面假设:1)变形前为平面变形后仍为平面2)始终垂直与轴线中性层:既不缩短也不伸长(不受压不受拉)。中性层是梁上拉伸区与压缩区的分界面。中性轴:中性层与横截面的交线n.V厂flj飞冋対匚iffr _小性/怖F汕杯变形时横截面是绕中性轴旋转
4、的。.梁纯弯曲时横截面上正应力的分布规律纯弯曲时梁横截面上只有正应力而无切应力。由于梁横截面保持平面,所以沿横截面高度方向纵向纤维从缩短到伸长是线性变化的,因此横截面上的正应力沿横截面高度方向 也是线性分布的。以中性轴为界,凹边是压应力,使梁缩短,凸边是拉 应力,使梁伸长,横截面上同一高度各点的正应力相等,距中性轴最远点有最大拉应力和最大压应力,中性轴上各点正应力为零。.梁纯弯曲时正应力计算公式在弹性范围内,经推导可得梁纯弯曲时横截面上任意一点的正应力A/v(T-式中,M为作用在该截面上的弯矩(Nmm ; y为计算点到中性轴的距离(mm;为横截面对中性轴z的惯性矩(mm。在中性轴上y=0,所以
5、=0;当 y=ymax 时,max o 最大正应力产生在离中性轴最远的边缘处,- h' y® _横截面对中性轴z的抗弯截面模量(mm)计算时,M和y均以绝对值代入,至于弯曲正应力是拉应力还是受拉侧的弯压应力,则由欲求应力的点处于受拉侧还是受压侧来判断。曲正应力为正,受压侧的为负。弯曲正应力计算式虽然是在纯弯曲的情况下导出的,但对于剪切弯曲的梁,只要其跨度L与横截面高度h之比L/h > 5,仍可运用这些公式计算弯曲正应力。3. 惯性矩和抗弯截面模量简单截面的惯性矩和抗弯截面模量计算公式41I117.0曲(1-/)式中"=普抗ra模星4. 梁纯弯曲时的强度条件A/
6、 % 沖二g rrI皿L对于等截面梁,弯矩最大的截面就是危险截面,其上、下边缘各点的弯曲正应力即为最大工作应力, 具有最大工作应力的点一般称为 危险梁的弯曲强度条件是:梁内危险点的工作应力不超过材料的许用应力。运用梁的弯曲强度条件,可对梁进行强度校核、设计截面和确定 许可载荷。例7-6 在例7- 3中的简支梁,若选用 D=100mmnd=60mr的空心圆形截面钢制造,已知梁的跨度l=3m, a=1m b=2m集中载荷F=25kN许用正应力=200MP。不计梁的自重,试校核该梁的强度。W 礁定最大穹矩齬例卩-3,架C点匪最大弯矩対/“尹二晋評皿eg心切次叭“C2>确定抗董截面模量厅maxm
7、m = 8.了X 10切肋'M 1如T9M旳8.7x10'五纯弯曲时梁的正应力在平面弯曲时,工程上近似地认为梁横截面上的弯矩是由截面上的正应力形成的,而剪力则由截面上的切应力所形成。本章将在梁弯 曲时的内力分析的基础上,导出梁弯曲时的应力与变形的计算,建立梁 的强度和刚度条件。为了研究梁横截面上的正应力分布规律,取一矩形截面等直梁,在表面画些平行于梁轴线的纵线和垂直干梁轴线的横线。在梁的两端施加一对位于梁纵向对称面内的力偶, 梁则发生弯曲。梁任意横截面 上的内力只有弯矩而无剪力, 这种弯曲称为纯弯曲,这种梁称为纯弯曲 梁。通常从变形的几何关系、物理关系和静力平衡条件三个方面来推
8、导出纯弯曲梁横截面上的正应力公式。1实验观察梁发生弯曲变形后,我们可以观察到以下现象:1横向线仍是直线且仍与梁的轴线正交,只是相互倾斜了一个角2、纵向线(包括轴线)都变成了弧线。3、梁横截面的宽度发生了微小变形,根据上述现象,可对梁的变形提出如下假设: 平面假设:梁弯曲变形时,其横截面仍保持平面,且绕某轴转过了一个微小的角度。 单向受力假设:设梁由无数纵向纤维组成,则这些纤维处于单向受拉或单向受压状态。可以看出,梁下部的纵向纤维受拉伸长,上部的纵向纤维受压缩短,其间必有一层纤维既不伸长也木缩短,这层纤维称为中性层。中性层和横截面的交线称为中性轴, 即图中的Z轴。梁的横截面绕Z轴转 动一个微小角
9、度。2、变形的几何关系图中梁的两个横截面之间距离为 dx,变形后中性层纤维长度仍为dx且dx= P d 0。距中性层为y的某一纵向纤维的线应变£为:即梁内任一纵向纤维的线应变£与它到中性层的距离y成正比。3、变形的物理关系由单向受力假设,当正应力不超过材料的比例极限时, 将虎克定律代入上式,得:可见矩形截面梁在纯弯曲时的正应力的分布有如下特点:中性轴上的线应变为零,所以其正应力亦为零。至忡性轴距离相等的各点,其线应变相等。根据虎克定律,它 们的正应力也相等。 在图示的受力情况下,中性轴上部各点正应力为负值,中性轴F部各点正应力为正值。 正应力沿y轴线性分布。最大正应力(绝对
10、值)在离中性轴最4、梁纯弯曲时横截面上正应力的分布规律5、纯弯曲时梁横截面上只有正应力而无切应力。由于梁横截面保持平面,所以沿横截面高度方向纵向纤维从缩短到伸长是线性变化的,因此横截面上的正应力沿横截面高度方向也 是线性分布的。以中性轴为界,凹边是压应力,使梁缩短,凸边是拉应力,使梁伸长,横截面上同一高度各点的正应力相等,距中性轴最远点有最 大拉应力和最大压应力,中性轴上各点正应力为零。6、梁纯弯曲时正应力计算公式在弹性范围内,经推导可得梁纯弯曲时横截面上任意一点的正应力cr 二式中,M为作用在该截面上的弯矩(Nmm; y为计算点到中性轴的距离(mm; I为横截面对中性轴z的惯性矩(mm。在中
11、性轴上y=0,所以=0 ;当y二ymax时,max 。 最大正应力产生在离中性轴最远的边缘处,-max横截面对中性轴z的抗弯截面模量计算时,M和 y均以绝对值代入,至于弯曲正应力是拉应受拉力还是压应力,则由欲求应力的点处于受拉侧还是受压侧来判断。侧的弯曲正应力为正,受压侧的为负。弯曲正应力计算式虽然是在纯弯曲的情况下导出的,但对于剪切弯曲的梁,只要其跨度L与横截面高度h之比L/h >5,仍可运 用这些公式计算弯曲正应力。惯性矩和抗弯截面模量简单截面的惯性矩和抗弯截面模量计算公式r工96"3* 6+武吩一衬0 I抒(1一金4)疋中圧二一 ZJ梁纯弯曲时的强度条件对于等截面梁,弯矩
12、最大的截面就是危险截面, 其上、下边缘各点 的弯曲正应力即为最大工作应力, 具有最大工作应力的点一般称为 危险梁的弯曲强度条件是:梁内危险点的工作应力不超过材料的许用应力。运用梁的弯曲强度条件,可对梁进行强度校核、设计截面和确定 许可载荷。例7-6 在例7- 3中的简支梁,若选用 D=100mjmd=60mr的空心圆形截面钢制造,已知梁的跨度l=3m, a=1m b=2m集中载荷F=25kN许用正应力=200MP。不计梁的自重,试校核该梁的强度。昶 确定毘大鹭矩捱例-乳梁二点的最大弯矩为343nm 二&7x10 mmM 二砂F 二 1幻*2:2 ©xWN 乃咖二 leZxlM
13、w 仙 I3x10Jf>0-LDl-£z) = 0.1xl0t)x 1-fz-巴 8.7x10六.梁纯弯曲时的强度条件梁纯弯曲的概念纯弯曲一一梁的横截面上只有弯矩而没有剪力。Q = 0 , M =常数。M梁纯弯曲时横截面上的正应力1梁纯弯曲时的 变形特点MaCIntnnhobM纵M训称冊屮性层中件轴aaoohbMMn平面假设:1)变形前为平面变形后仍为平面2)始终垂直与轴线中性层:既不缩短也不伸长(不受压不受拉)。中性层是梁上拉伸区与压缩区的分界面。中性轴:中性层与横截面的交线。变形时横截面是绕中性轴旋转的。2.梁纯弯曲时横截面上正应力的分布规律纯弯曲时梁横截面上只有正应力而无
14、切应力。由于梁横截面保持平面,所以沿横截面高度方向纵向纤维从缩短到伸长是线性变化的,因此横截面上的正应力沿横截面高度方向 也是线性分布的。以中性轴为界,凹边是压应力,使梁缩短,凸边是拉应力,使梁伸长,横截面上同一高度各点的正应力相等,距中性轴最远点有最 大拉应力和最大压应力,中性轴上各点正应力为零。3.梁纯弯曲时正应力计算公式在弹性范围内,经推导可得梁纯弯曲时横截面上任意一点的正应力式中,M为作用在该截面上的弯矩 (Nmm; y为计算点到中性轴的距离(mm; I为横截面对中性轴z的惯性矩(mm。在中性轴上y=0,所以=0 ;当 y二ymax 时,max O 最大正应力产生在离中性轴最远的边缘处
15、,横截面对中性轴z的抗弯截面模量计算时,M和 y均以绝对值代入,至于弯曲正应力是拉应力还是压应力,则由欲求应力的点处于受拉侧还是受压侧来判断。受拉 侧的弯曲正应力为正,受压侧的为负。弯曲正应力计算式虽然是在纯弯曲的情况下导出的,但对于剪切弯曲的梁,只要其跨度L与横截面高度h之比L/h >5,仍可运 用这些公式计算弯曲正应力。惯性矩和抗弯截面模量%茫 0.05"式中“=D简单截面的惯性矩和抗弯截面模量计算公式梁纯弯曲时的强度条件对于等截面梁,弯矩最大的截面就是危险截面, 其上、下边缘各点 的弯曲正应力即为最大工作应力, 具有最大工作应力的点一般称为 危险梁的弯曲强度条件是:梁内危
16、险点的工作应力不超过材料的许用应力。运用梁的弯曲强度条件,可对梁进行强度校核、设计截面和确定 许可载荷。例7-6 在例7- 3中的简支梁,若选用 D=100mmnd=60mr的空心圆形截面钢制造,已知梁的跨度l=3m, a=1m b=2m集中载荷F=25kN许用正应力=200MP。不计梁的自重,试校核该梁的强度。薜(13噺定最玄卑捱锯例T-已舞匚电的最丈延矩米C2)關定忧巷或直樱3阿w/ = 8.7 a 10乙也刿'C3)校核逼度MLoslJ A屁=1918.7x10< <y = 200XiPa七提高梁强度的主要措施A/ 提高梁强度的主要措施是:1)降低弯矩M的数值2)增大
17、抗弯截面模量W的数值降低最大弯矩Mnax数值的措施1).合理安排梁的支承最大弯矩,只为前者的五分之一。0.21少川III闇().21Q.025cfPq 尸0.02qP2).合理布置载荷FCFfl#4Ff/82、合理选择梁的截面合理的截面应该是:用最小的截面面积(即用材料少),得到大的抗弯截面模量WZ1).形状和面积相同的截面,采用不同的放置方式,则W值可能h>b竖放时(左)抗弯截面模量大,承载能力强,不易弯曲;平放时(右),抗弯截面模量小,承载能力差,易弯曲。工字钢、槽钢等梁放置方式不同其抗弯截面模量也不同,承载能力不同。2).面积相等而形状不同的截面,其抗弯截面模量W值不相同材料远离中性轴的截面(如圆环形、工字形等)比较经济合理。对于矩形截面,则可把中性轴附近的材料移置到上、下边缘处而形成工字形截面。工程中的吊车梁、桥梁常采用工字形、槽形或箱形截面,房屋建筑中的楼板采用空心圆孔板。3) .截面形状应与材料特性相适应对抗拉和抗压强度相等的塑性材料,宜采用中性轴对称的截面,如圆形、矩形、工字形等。max对抗拉强度小于抗压强度的脆性材料, 宜采用中性轴偏向受拉一侧的截面形状。3、采用等强度梁对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030全球3D细胞模型成像和分析系统行业调研及趋势分析报告
- 2025-2030全球无收银员结账解决方案行业调研及趋势分析报告
- 2025商业裙房买卖服务合同
- 销售合同签订流程图范本年
- 2025经济合同履约担保的法律规定具体有些
- 苹果购销合同书
- 国有股权转让合同
- 2025防水合同协议书范文
- 2025工程施工承包合同备案申报表(I)
- 2025安装工劳动合同
- 车辆维修、保养审批单
- 2024年3月四川省公务员考试面试题及参考答案
- 循环系统练习试题(含答案)
- 新生儿黄疸早期识别课件
- 医药营销团队建设与管理
- 二年级数学上册口算题100道(全册完整)
- 四百字作文格子稿纸(可打印编辑)
- 冷轧工程专业词汇汇编注音版
- 小升初幼升小择校毕业升学儿童简历
- 第一单元(金融知识进课堂)课件
- 新概念二册课文电子版
评论
0/150
提交评论