在小学数学教学中如何渗透函数思想和模型思想_第1页
在小学数学教学中如何渗透函数思想和模型思想_第2页
在小学数学教学中如何渗透函数思想和模型思想_第3页
在小学数学教学中如何渗透函数思想和模型思想_第4页
在小学数学教学中如何渗透函数思想和模型思想_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、在小学数学教学中如何渗透函数思想和模型思想函数思想的本质在于建立和研究变量之间的对应关系。具体地说,函数思想体现于:认识到这个世界是普遍联系的,各个量之间总是有互相依存的关系,即“普遍联系”的观点;于“变化”中寻求“规律(关系式)”,即“模式化”思想;于“规律”中追求“有序”“结构化”“对称”等思想;感悟“变化”有快有慢,有时变化的速度是固定的,有时是变动的;根据“规律”判断发展趋势,预测未来,并把握未来,即“预测”的思想。函数的核心就是“把握并刻画变化中的不变,其中变化的是过程,不变的是规律(关系)”。学生愿意去发现规律,并能将规律表述出来的意识和能力,就是函数思想在教学中的渗透。小学阶段如

2、何渗透函数思想想呢?1.在探索“数与运算”的规律中渗透函数思想在人教版小学数学五年级上册第20页中安排了以下练习:算一算,填一填。有些老师让学生计算完毕、答案正确就满足了。假如我们以函数思想的高度来设计教学,则可以这样做:先计算,后核对答案,接着让学生观察所填答案有什么找规律,并思考这个特点是怎样引起的。然后再出现教科书第24页的如下练习,固然学生还没有学过一个数除以小数的计算方法,但可以根据前一题得到的规律加以解决。这种整合不光是能解决一两个练习的题目,而是让学生从中体会到“当一个数变化,另一个数不变时,得数变化是有规律的”这种朴素的函数思想,同时为六年级学习正、反比例做了很好的孕伏。这样做

3、可以把商不变的性质、小数除法、正比例和反比例的相关知识串联起来,使知识脉络化,可以说是一举多得,而这种“得”归根到底是依靠于函数思想而实现的。2在“空间与图形”领域的教学中渗透函数思想在学习了长方形与正方形周长和面积后我们可以设计“周长和面积”的练习课。课上设计这样的环节:用16根1厘米长的小棒围长大方形或正方形,你能围出多少个?其中面积最大的是多少?并填写如下表格。学生经过研究可以得到:长7cm,宽1cm;长6cm,宽2cm;长5cm,宽3cm;长4cm,宽4cm(正方形)这四种长方形,其中正方形的面积最大。在研究过程中学生会渐渐地熟悉到:要想得到最大的面积,就要把所有的长方形逐一例举出来往

4、比较;而要想得到不同的长方形,必须在保持周长不变的情况下改变长方形的长和宽,由于长逐渐地减小,在周长不变的情况下,宽必须跟随着不断地增大。这样就把“静态”的学习变成了“动态”的研究,而这种由“静”到“动”本身就是函数的本质。因此说,是函数思想使学生学习的过程“动”了起来,使学生的学习“主动”起来,这样也更有利于渗透函数域的概念和极值的概念。3利用数目关系在解决实际题目中渗透函数思想学生在小学阶段学习和把握了很多的数目关系,如:单价、数目和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间的关系实在当这些数目关系中的某一种量固定后,另外两种量在变化时就构成了函数。以简单的解决题目

5、来说,我们可以把封闭的题目改编成开放的题,如让学生根据所给的两个条件补一个题目,或给一个条件和题目,让学生补上另一个条件。例如,学校有120名学生排队做操,可以站几排?这看起来是很简单的一点儿变化,当把学生的各种补充条件汇集到一起时,学生就会熟悉到:可以站几排是随着每排人数的变化而变化着的;而每排的人数也会有一定限制,至少不会少于1人,至多不会超过120人。这个范围所蕴含的思想就是函数中的定义域和值域。我们看到这种开放不是简单形式上的开放,而是建立在函数思想上的有目的的开放 4在“统计与概率”的教学中渗透函数思想 “统计与概率”的内容往往通过表格、图像来描述数据,但大多数教师以为其中不存在函数

6、关系,只重视到了其对培养学生统计观念的作用而忽视了对函数思想的渗透。下面是一位老师设计的“丈量一个水龙头不同时间内滴水量”的活动。环节一:边丈量边填表。环节二:根据实验数据再制成折线统计图。环节三:结果分析:(1)说一说从图中你发现了什么;(2)描述一下滴水量与时间之间的关系;(3)估计3小时将浪费多少毫升水。这个活动中, 学生不仅经历了统计的全过程,而且亲历了滴水量的变化随着时间的变化而变化的过程,初步体验了函数的味道。与此同时,还对学生进行了节水的德育教育,可见其功能是多方面的。数学模型一般是指用数学语言、符号和图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。小学数学中

7、的数学模型,主要的是确定性数学模型,广义地讲,数学的概念、法则、公式、性质、数量关系等都是模型。数学模型具有一般化、典型化、和精确化的特点。模型思想就是针对要解决的问题,构造相应的数学模型,通过对数学模型的研究来解决实际问题的一种数学思想方法。(1)模型化思想是“问题解决”的重要形式,(2)模型化思想是培养学生“用数学”的重要途径,(3)模型化思想有利于培养学生的创造能力。渗透模型思想的方法有:1、分析与综合。分析与综合是重要的思维方式,同样是重要的数学方法,是学习数学过程中建立数学模型的重要途径之一。分析是对所获得的数学材料或数学问题的构成要素进行研究,把握各要素在整体中的作用,找出其内在的

8、联系与规律,从而得出有关要素的一般化的结论的思维方式。综合是将对数学材料、数学问题的分析结果和各要素的属性进行整合,以形成对该队象的本质属性的总体认识的思维方法。因而,分析与综合相结合,在建立起具有本质特征和方法论意义的数学模型上具有重要的意义。2、比较与分类。比较是对有关的数学知识或数学材料,辨别它们的共同点与不同点。比较的目的是认识事物的联系与区别,明确彼此之间存在的同一性与相似性,以便揭示其背后的共同模型。分类是在比较的基础上,按照事物间性质的异同,将具有相同性质的对象归入一类,不同性质的对象归入另一类的思维方法。因此,比较与分类常常是联系在一起的,在建立数学模型的诸多思维方法中,比较与

9、分类有着重要的作用,它往往是抽象概括、合情推理的前提,而正确地进行比较与分类的基础是仔细、深入的观察。3、抽象与概括。抽象与概括是数学能力的核心要素之一,是形成概念、得出规律的关键性手段,因而,也是建立数学模型最为重要的思维方法。抽象是从许多数学事实或数学现象中,舍去个别的、非本质的属性,而抽出共同的本质的属性。概括则是把抽象出来的事物间的共同特征,归结出来,它以抽象为基础,是抽象过程的进一步发展。4、猜想与验证。猜想是对研究的数学对象或数学问题进行观察、实验、比较、归纳等一系列的思维活动,依据已有的材料或知识经验,做出符合一定规律或是式的推测性想象。猜想是一种带有一定直觉性的比较高级的思维方

10、式,对于探索和发现性学习来说,猜想是一种重要的思维方法。学生在验证过程中,会发现新的问题,并在解决新问题的过程中,完善自己的猜想,发挥创造才能,最终发现规律。这样一个学习过程可以概括为:“实践操作-提出猜想-进行验证-自我反思-建立模型”,这不仅是一个主动学习的过程,更是发现学习、创新学习的过程。在小学数学教学中如何渗透函数思想和模型思想通过学习“小学函数思想和模型思想的教学策略”课程,充分认识到:函数思想的本质在于建立和研究变量之间的对应关系,核心就是“把握并刻画变化中的不变,其中变化的是过程,不变的是规律(关系)”。学生愿意去发现规律,并能将规律表述出来的意识和能力,就是函数思想在教学中的

11、渗透。根据函数思想及函数思想在教学中的渗透原则,结合教学实际谈谈自在小学数学中是如何渗透函数思想想呢?1.在探索“数与运算”的规律中渗透函数思想在教学小数除法中课本安排了练习:算一算,填一填,我们可以函数思想来设计教学:先计算,后核对答案,接着让学生观察所填答案有什么找规律,并思考这个特点是怎样引起的。然后再出现教科书的针对性练习,固然学生还没有学过一个数除以小数的计算方法,但可以根据前一题得到的规律加以解决。这种整合不光是能解决一两个练习的题目,而是让学生从中体会到“当一个数变化,另一个数不变时,得数变化是有规律的”这种朴素的函数思想,同时为六年级学习正、反比例做了很好的孕伏。这样做可以把商

12、不变的性质、小数除法、正比例和反比例的相关知识串联起来,使知识脉络化,可以说是一举多得,而这种“得”归根到底是依靠于函数思想而实现的。2在“空间与图形”领域的教学中渗透函数思想在学习了长方形与正方形周长和面积后我们可以设计“周长和面积”的练习课。课上设计这样的环节:用16根1厘米长的小棒围长方形或正方形,你能围出多少个?其中面积最大的是多少?学生经过研究可以得到:长7cm,宽1cm;长6cm,宽2cm;长5cm,宽3cm;长4cm,宽4cm(正方形)这四种长方形,其中正方形的面积最大。在研究过程中学生会渐渐地熟悉到:要想得到最大的面积,就要把所有的长方形逐一例举出来往比较;而要想得到不同的长方

13、形,必须在保持周长不变的情况下改变长方形的长和宽,由于长逐渐地减小,在周长不变的情况下,宽必须跟随着不断地增大。这样就把“静态”的学习变成了“动态”的研究,而这种由“静”到“动”本身就是函数的本质。因此说,是函数思想使学生学习的过程“动”了起来,使学生的学习“主动”起来,这样也更有利于渗透函数域的概念和极值的概念。3利用数量关系在解决实际题目中渗透函数思想学生在小学阶段学习和把握了很多的数目关系,如:单价、数量和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间的关系当这些数量关系中的某一种量固定后,另外两种量在变化时就构成了函数。以简单的解决题目来说,我们可以把封闭的题目改编

14、成开放的题,如让学生根据所给的两个条件补一个题目,或给一个条件和题目,让学生补上另一个条件。例如,学校有120名学生排队做操,可以站几排?这看起来是很简单的一点儿变化,当把学生的各种补充条件汇集到一起时,学生就会熟悉到:可以站几排是随着每排人数的变化而变化着的;而每排的人数也会有一定限制,至少不会少于1人,至多不会超过120人。这个范围所蕴含的思想就是函数中的定义域和值域。我们看到这种开放不是简单形式上的开放,而是建立在函数思想上的有目的的开放 4在“统计与概率”的教学中渗透函数思想 “统计与概率”的内容往往通过表格、图像来描述数据,但大多数教师以为其中不存在函数关系,只重视到了其对培养学生统

15、计观念的作用而忽视了对函数思想的渗透。如设计“测量一个水龙头不同时间内滴水量”的活动。环节一:边测量边填表。环节二:根据实验数据再制成折线统计图。环节三:结果分析:(1)说一说从图中你发现了什么;(2)描述一下滴水量与时间之间的关系;(3)估计3小时将浪费多少毫升水。这个活动中, 学生不仅经历了统计的全过程,而且亲历了滴水量的变化随着时间的变化而变化的过程,初步体验了函数的味道。与此同时,还对学生进行了节水的德育教育,可见其功能是多方面的。数学模型一般是指用数学语言、符号和图形等形式来刻画、描述、反映特定的问题或具体事物之间关系的数学结构。小学数学中的数学模型,主要的是确定性数学模型,如数学的

16、概念、法则、公式、性质、数量关系等都是模型。数学模型具有一般化、典型化、和精确化的特点。模型思想就是针对要解决的问题,构造相应的数学模型,通过对数学模型的研究来解决实际问题的一种数学思想方法。(1)模型化思想是“问题解决”的重要形式,(2)模型化思想是培养学生“用数学”的重要途径,(3)模型化思想有利于培养学生的创造能力。渗透模型思想的方法有:1、分析与综合。分析与综合是重要的思维方式,同样是重要的数学方法,是学习数学过程中建立数学模型的重要途径之一。分析是对所获得的数学材料或数学问题的构成要素进行研究,把握各要素在整体中的作用,找出其内在的联系与规律,从而得出有关要素的一般化的结论的思维方式

17、。综合是将对数学材料、数学问题的分析结果和各要素的属性进行整合,以形成对该队象的本质属性的总体认识的思维方法。因而,分析与综合相结合,在建立起具有本质特征和方法论意义的数学模型上具有重要的意义。2、比较与分类。比较是对有关的数学知识或数学材料,辨别它们的共同点与不同点。比较的目的是认识事物的联系与区别,明确彼此之间存在的同一性与相似性,以便揭示其背后的共同模型。分类是在比较的基础上,按照事物间性质的异同,将具有相同性质的对象归入一类,不同性质的对象归入另一类的思维方法。因此,比较与分类常常是联系在一起的,在建立数学模型的诸多思维方法中,比较与分类有着重要的作用,它往往是抽象概括、合情推理的前提

18、,而正确地进行比较与分类的基础是仔细、深入的观察。3、抽象与概括。抽象与概括是数学能力的核心要素之一,是形成概念、得出规律的关键性手段,因而,也是建立数学模型最为重要的思维方法。抽象是从许多数学事实或数学现象中,舍去个别的、非本质的属性,而抽出共同的本质的属性。概括则是把抽象出来的事物间的共同特征,归结出来,它以抽象为基础,是抽象过程的进一步发展。4、猜想与验证。猜想是对研究的数学对象或数学问题进行观察、实验、比较、归纳等一系列的思维活动,依据已有的材料或知识经验,做出符合一定规律或是式的推测性想象。猜想是一种带有一定直觉性的比较高级的思维方式,对于探索和发现性学习来说,猜想是一种重要的思维方

19、法。学生在验证过程中,会发现新的问题,并在解决新问题的过程中,完善自己的猜想,发挥创造才能,最终发现规律。这样一个学习过程可以概括为:“实践操作-提出猜想-进行验证-自我反思-建立模型”,这不仅是一个主动学习的过程,更是发现学习、创新学习的过程。一、函数思想函数思想是一种考虑对应、考虑运动变化、相依关系,以一种状态确定地刻画另一种状态,由研究状态过渡到研究变化过程的思想方法,函数思想的本质在于建立和研究变量之间的对应关系。函数思想在小学阶段强调的是“渗透”,让学生感受到“于变化之中寻求不变,并把握规律的重要性”。小学阶段并不要求学习“形式化”的函数定义。在小学数学教学中渗透函数思想,要把握以下

20、两条基本原则:(1)创设“变化”的过程,才能感受到函数思想。(2)激发学生“探究”的本性,于“变”中把握“不变”,满足人的好奇本性。1探索规律对“模式”的初步认识。“探索规律”实际上就是培养学生的“模式化”的思想,发现规律就是发现一个“模式”。如一年级下册:百数表中的规律,在“百数表”中除了可以探索数的排列规律(横着、竖着、斜着)外,还可以进一步探索每一行中相邻的两个数的规律、每一列中相邻两个数的规律,甚至每两行与每两列相邻四个数之间的规律,这些规律中蕴含着多种变化的模式。又如六年级下册:正反比例意义的学习是对变化“模式”的一次集中探索,这一内容的学习中,以表格的形式呈现了多种不同的变化规律。

21、2.基本数量关系、图形位置与变换对“关系”的体验。函数就像一座桥梁,建立起两个集合之间的“关系”。“一一对应”在小学数学教材中是贯穿始终的。如在认数110时,我们可以呈现。物体的个数与点子图进行一一对应的图像,在具体实物与抽象的数之间建立起桥梁的作用。在小学,学生接触更多的是“两个确定或多个确定一个”,即二元函数和多元函数。例如:“体积的问题”源于教材中的一个练习,一块长30cm、宽25cm的长方形铁皮,从四个角各切掉一个边长是5cm的正方形,然后做成盒子。这个盒子用了多少铁皮,它的容积是多少?”这个问题就只是一道简单的计算题,当然问题解决过程中也发展了学生的空间观念。但是如果将原题中的规定“

22、切掉边长是5cm的正方形”改为猜想并验证“切掉边长是多少厘米的正方形时,铁盒的容积最大”问题就由静止变得动态起来。借助这样运动、变化的过程,对学生进行函数思想的初步渗透。小学教材中以各种素材、各种形式提供给学生大量关于集合之间“关系”直观经验,对“关系”的体验使学生对变量之间的相依关系有了初步的认识,而这种变量间的相依关系恰恰就是函数概念的本质。3.字母表示数、图像、表格等对多种数学语言的感受和初步使用。由于函数反映的是变量之间的关系,所以必须借助数字以外的符号来表示。常用的有:语言描述、表格、图像和解析式四种方法。例如:教学加法和乘法运算定律时,出现用字母表示各种运算定律,使学生初步感受字母

23、可以表示一般意义上的数。又如五年级长方体体积公式的推导,教材中就是通过用体积单位拼摆长方体后填表格,进而归纳出长方体体积的计算公式的。4.为学生多提供利用函数思想解决问题的机会。对于函数的学习,应该与体会、感受和运用函数解决问题有机的结合起来。应该引导学生去思考函数的应用问题,特别是思考函数在日常生活和其他学科的应用。例如:可以给学生提供心电图,能使学生了解到时间和心跳频率的函数关系。二、模型思想在小学数学教材中,模型无处不在。小学生学习数学知识的过程,实际上就是对一系列数学模型的理解、把握的过程。在小学数学教学中,重视渗透模型化思想,帮助小学生建立并把握有关的数学模型,有利于学生握住数学的本

24、质。什么是模型思想呢?模型思想就是针对要解决的问题,构造相应的数学模型,通过对数学模型的研究来解决实际问题的一种数学思想方法。那么,如何在小学数学教学中把模型思想渗透到课堂教学中呢?一、一些实物模型的运用在小学数学中,学生要接触各种数:自然数、分数、小数,这些数都是现实模型的抽象。因此在教学中要适时有到一些实物模型如在低年级教学时用到的小棒:有一根一根的,一捆一捆的。这样,学生在刚接触数学时,通过学生的直觉和动手,逐渐有了一和十的概念;还有计数器,学生在已有一定的数的观念后,通过观察和实际操作,不仅对数有了更深刻的认识,而且还有了一定的数位观念:十个一是十,十个十是百等。还有象数位表、数轴、面

25、积模型等更抽象一些的数学型。这些直观模型对于学生学习、理解数学知识是非常重要的,而我们的教材和教学中对此体现的并不充分,这就需要我们教师意识到他的重要性,并且挖掘相应的素材。二、选择合适的数学模型,让学生逐步感觉模型思想在平时的教学中,一节课中可用的数学模型有很多,而如果无目的的滥用,可能会造成课堂混乱,学生注意力不集中,或对本节课的重难点理解作用不大等适得其反的后果,这就需要教师提前在备课时根据学生年龄特点、知识分布、学生个性特征等,选用合适的数学模型。如在低年级教学,可多用一些直观的、动手操作性强的模型,而在学生学习数学有一定的经验后,可逐步采用一些抽象性的如图表模型、数线模型等,这样,即

26、让学生有了一定的成就感,还有助于学生模型思想的培养。三、更加关注学生的学习过程数学教学不只是为了教给学生知识,而是要教会学生学会发现问题,进而运用数学思维方法去解决问题。因此,在小学数学的教学中,做为一名数学教师,就要关注学生学习的过程,让学生在通过一些直观模型、抽象模型得出数学结论的同时,学会解决数学问题的方法和培养自己勤于动手,不畏困难的品质,为学生一生的学习成才奠定基础。在小学数学教育中有意识地向学生渗透一些基本函数思想和模型思想是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要思维活动,且它本身也蕴涵了情感素养的熏染。这点也是新课程

27、标准充分强调的。一、基本理念中指出:教师协助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法这说明了数学思想方法对小学数学学习有着极其重要的作用。认为在小学数学教学中可以从以下几方面做起。1、利用数量关系在解决实际问题中渗透函数思想。学生在小学阶段学习和掌握了许多的数量关系,如:单价、数量和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间的关系其实当这些数量关系中的某一种量固定后,另外两种量在变化时就构成了函数。2在统计与概率”教学中渗透函数思想统计与概率”内容往往通过表格、图像来描述数据,统计图直观地反映了数量的变化趋势,折线统计图在刻画连

28、续量时,比条形统计图更全面、更直观地反映了数量的整体性和变化性,因此折线统计图可以看做是一种函数表达式是分段函数的特定的函数图像。3.与其他数学思想方法的结合、相互勾连中渗透函数思想.。结合数形结合的思想方法。解析几何为几何学的研究提供了新的方法,数形结合的思想方法将抽象的数学语言与直观的图像结合起来。函数是变量和变量之间关系的重要的数学模型,是中学阶段数学学习的一条主线。使小学生经历一些函数的雏形,丰富他们对函数的感受,有助于小学生数学学习的深刻性,中小学数学的衔接。二、数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小

29、学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中:1.创设情境,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数学模型的存在。2.参与探究,主动建构数学模型。学生的数学学习活动应当是一个主动,活泼的、生动和富有个性的过程,因此,在教学时要善于引导学生自主探究,合作交流,对学习过程,学习材料,学习发现主动归纳,提升,力求建构出人人都能

30、理解的数学模型。3.解决问题,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。小学建模思想的形成过程是一个综合性的过程,是数学能力和其他能力协调发展的过程。在数学教学过程中进行数学模型思想的渗透,不仅可以使学生体会数学并非是一门抽象的学科,而且可以使学生感觉到利用模型思想解决实际问题的妙处,进而对数学产生更大的兴趣。在小学数学教育中有意识地向学生渗透一些基本函数思想和模型思想是提高学生数学能力和思维品质的重要手段,是数学教育中实现

31、从传授知识到培养学生分析问题、解决问题能力的重要思维活动,且它本身也蕴涵了情感素养的熏染。这点也是新课程标准充分强调的。一、基本理念中指出:教师协助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法这说明了数学思想方法对小学数学学习有着极其重要的作用。认为在小学数学教学中可以从以下几方面做起。1、利用数量关系在解决实际问题中渗透函数思想。学生在小学阶段学习和掌握了许多的数量关系,如:单价、数量和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间的关系其实当这些数量关系中的某一种量固定后,另外两种量在变化时就构成了函数。2在统计与概率”教学中渗透函

32、数思想统计与概率”内容往往通过表格、图像来描述数据,统计图直观地反映了数量的变化趋势,折线统计图在刻画连续量时,比条形统计图更全面、更直观地反映了数量的整体性和变化性,因此折线统计图可以看做是一种函数表达式是分段函数的特定的函数图像。3.与其他数学思想方法的结合、相互勾连中渗透函数思想.。结合数形结合的思想方法。解析几何为几何学的研究提供了新的方法,数形结合的思想方法将抽象的数学语言与直观的图像结合起来。函数是变量和变量之间关系的重要的数学模型,是中学阶段数学学习的一条主线。使小学生经历一些函数的雏形,丰富他们对函数的感受,有助于小学生数学学习的深刻性,中小学数学的衔接。二、数学模型不仅为数学

33、表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中:1.创设情境,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数学模型的存在。2.参与探究,主动建构数学模型。学生的数学学习活动应当是一个主动,活泼的、生动和富有个性的过程,因此,在

34、教学时要善于引导学生自主探究,合作交流,对学习过程,学习材料,学习发现主动归纳,提升,力求建构出人人都能理解的数学模型。3.解决问题,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。小学建模思想的形成过程是一个综合性的过程,是数学能力和其他能力协调发展的过程。在数学教学过程中进行数学模型思想的渗透,不仅可以使学生体会数学并非是一门抽象的学科,而且可以使学生感觉到利用模型思想解决实际问题的妙处,进而对数学产生更大的兴趣。在小学数学教

35、育中有意识地向学生渗透一些基本函数思想和模型思想是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要思维活动,且它本身也蕴涵了情感素养的熏染。这点也是新课程标准充分强调的。一、基本理念中指出:教师协助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法这说明了数学思想方法对小学数学学习有着极其重要的作用。认为在小学数学教学中可以从以下几方面做起。1、利用数量关系在解决实际问题中渗透函数思想。学生在小学阶段学习和掌握了许多的数量关系,如:单价、数量和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间

36、的关系其实当这些数量关系中的某一种量固定后,另外两种量在变化时就构成了函数。2在统计与概率”教学中渗透函数思想统计与概率”内容往往通过表格、图像来描述数据,统计图直观地反映了数量的变化趋势,折线统计图在刻画连续量时,比条形统计图更全面、更直观地反映了数量的整体性和变化性,因此折线统计图可以看做是一种函数表达式是分段函数的特定的函数图像。3.与其他数学思想方法的结合、相互勾连中渗透函数思想.。结合数形结合的思想方法。解析几何为几何学的研究提供了新的方法,数形结合的思想方法将抽象的数学语言与直观的图像结合起来。函数是变量和变量之间关系的重要的数学模型,是中学阶段数学学习的一条主线。使小学生经历一些

37、函数的雏形,丰富他们对函数的感受,有助于小学生数学学习的深刻性,中小学数学的衔接。二、数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中:1.创设情境,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数学模型的存在。

38、2.参与探究,主动建构数学模型。学生的数学学习活动应当是一个主动,活泼的、生动和富有个性的过程,因此,在教学时要善于引导学生自主探究,合作交流,对学习过程,学习材料,学习发现主动归纳,提升,力求建构出人人都能理解的数学模型。3.解决问题,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。小学建模思想的形成过程是一个综合性的过程,是数学能力和其他能力协调发展的过程。在数学教学过程中进行数学模型思想的渗透,不仅可以使学生体会数学并非是一

39、门抽象的学科,而且可以使学生感觉到利用模型思想解决实际问题的妙处,进而对数学产生更大的兴趣。在小学数学教育中有意识地向学生渗透一些基本函数思想和模型思想是提高学生数学能力和思维品质的重要手段,是数学教育中实现从传授知识到培养学生分析问题、解决问题能力的重要思维活动,且它本身也蕴涵了情感素养的熏染。这点也是新课程标准充分强调的。一、基本理念中指出:教师协助学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法这说明了数学思想方法对小学数学学习有着极其重要的作用。认为在小学数学教学中可以从以下几方面做起。1、利用数量关系在解决实际问题中渗透函数思想。学生在小学阶段学习和

40、掌握了许多的数量关系,如:单价、数量和总价之间的关系;路程、时间和速度的关系;工作量、工作效率和工作时间的关系其实当这些数量关系中的某一种量固定后,另外两种量在变化时就构成了函数。2在统计与概率”教学中渗透函数思想统计与概率”内容往往通过表格、图像来描述数据,统计图直观地反映了数量的变化趋势,折线统计图在刻画连续量时,比条形统计图更全面、更直观地反映了数量的整体性和变化性,因此折线统计图可以看做是一种函数表达式是分段函数的特定的函数图像。3.与其他数学思想方法的结合、相互勾连中渗透函数思想.。结合数形结合的思想方法。解析几何为几何学的研究提供了新的方法,数形结合的思想方法将抽象的数学语言与直观

41、的图像结合起来。函数是变量和变量之间关系的重要的数学模型,是中学阶段数学学习的一条主线。使小学生经历一些函数的雏形,丰富他们对函数的感受,有助于小学生数学学习的深刻性,中小学数学的衔接。二、数学模型不仅为数学表达和交流提供有效途径,也为解决现实问题提供重要工具,可以帮助学生准确、清晰地认识、理解数学的意义。在小学教学活动中,教师应采取有效措施,加强教学模型思想的渗透,提高学生的学习兴趣,培养学生用数学意识以及分析和解决实际问题的能力,将模型思想渗透到教学中:1.创设情境,感知数学建模思想。情景的创设要与社会生活实际,时代热点问题,自然,社会文化等与数学有关系的各种因素相结合。激发学生的兴趣,使

42、学生用积累的生活经验来感受其中隐含的数学问题,从而促进学生将生活问题抽象成数学问题,感知数学模型的存在。2.参与探究,主动建构数学模型。学生的数学学习活动应当是一个主动,活泼的、生动和富有个性的过程,因此,在教学时要善于引导学生自主探究,合作交流,对学习过程,学习材料,学习发现主动归纳,提升,力求建构出人人都能理解的数学模型。3.解决问题,拓展应用数学模型。用所建立的数学模型来解答生活实际中的问题,让学生能体会到数学模型的实际应用价值,体验到所学知识的用途和益处,进一步培养学生应用数学的意识和综合应用数学解决问题的能力,让学生体验实际应用带来的快乐。小学建模思想的形成过程是一个综合性的过程,是

43、数学能力和其他能力协调发展的过程。在数学教学过程中进行数学模型思想的渗透,不仅可以使学生体会数学并非是一门抽象的学科,而且可以使学生感觉到利用模型思想解决实际问题的妙处,进而对数学产生更大的兴趣。小学数学教学中把函数思想和模型思想渗透到课堂教学中几点认识一、函数思想函数思想是一种考虑对应、考虑运动变化、相依关系,以一种状态确定地刻画另一种状态,由研究状态过渡到研究变化过程的思想方法,函数思想的本质在于建立和研究变量之间的对应关系。函数思想在小学阶段强调的是“渗透”,让学生感受到“于变化之中寻求不变,并把握规律的重要性”。小学阶段并不要求学习“形式化”的函数定义。在小学数学教学中渗透函数思想,要

44、把握以下两条基本原则:(1)创设“变化”的过程,才能感受到函数思想。(2)激发学生“探究”的本性,于“变”中把握“不变”,满足人的好奇本性。1探索规律对“模式”的初步认识。“探索规律”实际上就是培养学生的“模式化”的思想,发现规律就是发现一个“模式”。如一年级下册:百数表中的规律,在“百数表”中除了可以探索数的排列规律(横着、竖着、斜着)外,还可以进一步探索每一行中相邻的两个数的规律、每一列中相邻两个数的规律,甚至每两行与每两列相邻四个数之间的规律,这些规律中蕴含着多种变化的模式。又如六年级下册:正反比例意义的学习是对变化“模式”的一次集中探索,这一内容的学习中,以表格的形式呈现了多种不同的变化规律。2.基本数量关系、图形位置与变换对“关系”的体验。函数就像一座桥梁,建立起两个集合之间的“关系”。“一一对应”在小学数学教材中是贯穿始终的。如在认数110时,我们可以呈现。物体的个数与点子图进行一一对应的图像,在具体实物与抽象的数之间建立起桥梁的作用。在小学,学生接触更多的是“两个确定或多个确定一个”,即二元函数和多元函数。例如:“体积的问题”源于教材中的一个练习,一块长30cm、宽25cm的长方形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论