航海雷达及ARPA_第1页
航海雷达及ARPA_第2页
航海雷达及ARPA_第3页
航海雷达及ARPA_第4页
航海雷达及ARPA_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 < 航海雷达与ARPA >第一章 基本工作原课第一节 测距测方位基本原理1测距a)利用电磁波特性:1).直接传播(微波波段)2).匀速传播(同一媒质中)3).反射特性(在任何两种媒质的边界面)b)计算公式:S = C( t2 - t1 ) / 2其中:S:目标和本船距离; t1 :发射时刻; t2 :接收时刻 ;C:电波速度;为300000公里/秒 为准确测量( t2 - t1 ) ,发射信号包络为矩形脉冲。2测向 天线为定向天线,只向一个方向发射,也只接收这个方向的目标回波,实现这个方向的测距。随着天波的转动,实现不同方向的测距。 第二节 基本组成及各部分作用1)触发电路: 每

2、隔一段时产生一个尖脉冲,同时送到发射机、接收机、显示器三部分,使它们同步工作。(触发电路决定工作开始的时间)2)发 射 机: 触发脉冲到来后,立刻产生一个大功率,微波波段,具有一定宽度的脉冲包络射频(雷达工作频率,微波波段)的信号。3)发收开关: 发射时;将发射机与天线接通,并将天线与接收机断开。 接收时;将发射机与天线断开,并将天线与接收机接通。l 第二章 船用雷达设备第一节 中频电源设备 为满足船用雷达工作、及工作环境的要求,雷达对电源的电压值、频率值及各指标的稳定性均有具体的要求,船舶上存在低频、高频电源干扰,有船电负载多变化大等等现象。采用专门的中频电源,正是为了防止这些干扰和有害的现

3、象。目前;雷达电源有中频逆变器、中频变流机组二种。第三节 雷达发射机一、主要组成及各部分作用1:触发脉冲产生器: 相当于时钟电路,使雷达各部分同步工作。2调制器及预调制器: 触发脉冲一到,预调制器输出具有一定宽度的小功率正方波,控制预调制器产生的方波的起始时刻,预调制器产生的方波控制调制器,使调制器产生大功率负高压脉冲。有的雷达没有预调制器,预调制器的功能由调制器完成。 所以;调制器是产生高压的部件。3: 磁控营: 在调制器输出的负高压作用下,磁控营产生矩形调制的微波振荡脉冲.实现能量转换,调制器相当于高压电源。5.2):磁控营基本结构及工作原理 磁控营是实现微波振荡的元件,其结构、工作原理,

4、与实际使用中的调试、维护等等事宜有关。下面我们扼要介绍之。A:基本结构 阴极和阳极之间的空间, 称为空腔,空腔内为真空。空腔内,有永久磁铁提供的恒定磁场,如图示。 阴极内含有灯丝,加调制器送来的负高压前,灯丝先通电3min,用于加热阴极,阴极表面有氧化物涂层,加热使其产生自由电子,能量转换是自由电子完成的,没有3min加热,磁控管不能正常工作。B:工作原理 调制器负高压脉冲一到,阴极和阳极之间激起微波振荡。 阴极附件的自由电子,在飞向阳极过程中,由调制器提供的高压,使电子获得能量。 又在恒定磁场的作用下,把自由电子获得的能量,传给微波振荡,使原本微弱的微波振荡强大起来。载波频率采用下列二种:S

5、波段 (29003100)MHZ 10cm(波长)X波段 (93009500)MHZ 3cm(波长) 5.4):工作状态判断:l 磁控管正常工作时,有稳定的阳极电流,所以;能够输出稳定的大功率微波,氖灯遇大功率微波辐射会发亮。l 这样;我们可以采用氖灯法、电流观察法、雷达性能监视器三种方法来判断磁控管工作状态。l 电流法:l a):电流值为规定值,磁控管工作正常。否则为不正常。l 氖灯法:l 氖灯放在距收发机波导口1015(cm)处,若氖灯发亮,说明正常。不发亮,管子不工作。l 雷达性能监视器 l (后续章节介绍)5.5):磁控管保存及使用: 由于磁化作用,磁控管保存有如下规定: 木箱内,磁控

6、管离铁磁体至少10cm,二个磁控管之间至少距离20cm。备用磁控管应经常轮流使用。 5.3):老练l “老练”是更换磁控管时,为确保设备安全,要进行的一个步骤。l 什么是 “打火” l 磁控营空腔内为真空,如果空腔内有气体,高压会使气体电离,就会有负离子飞向阳极,形成阳极电流,这一现象称为“打火”。l 什么是 “老练”l 气体一下子全部电离,就会有大量负离子飞向阳极,形成很大的阳极电流,会损伤阳极。l 逐步加高压,逐步电离,慢慢去除气体,可以避免对磁控管的伤害,这一过程称为老练,步骤如下:l “老练”步骤l a):先加灯丝电压半小时。l b):再加较低的高压半小时或更长时间,之后加较高的电压。

7、l c):若在某电压灯火,退回先前的电压,一段时间后,再返回该电压,若再打火,则再退回,直到不打火,这样;电压慢慢向上升,直到额定值。l 老练前提:新管,6个月未用的旧管。l 三特高压电源的三种开关l 发射开并、延时开关、门开关三种开关各自有不同的用处,三种开关同时合上、高压才能加到磁控管。1:3分钟延时开关: 保护磁控管2:门开关: 收发机箱的盖板没有合上,门开关断开,调制器没有特高压电源供电,不能发射。这样就确保了人员的安全。3:发射开关(雷达电源:off -> Standby): 由操作人员控制。开启雷达电源后,“预备”指示灯亮,延时开关,保证在发射开并合上3分钟后,再接通。l 第

8、四节 微波传输及天线系统 天线系统实现了雷达微波信号的径向发射与接收,微波传输部件实现了天线与收发机的连接。 微波传输及天线系统采用的器件是微波器件,有别于雷达的其他部分。下面我们予以介绍。 1组成及基本工作原理 天线系统由天线、驱动电机、传动装置、船首线电路、方位同步发送机、波导等组成。各部分作用如下: 1): 驱动电机: 通过传动装置,带动天线、船首线电路及方位同步发送机转动。天线约每3秒转一圈。 2): 方位同步发送机: 将天线的转动角信号,送去显示器,使得显示器产生的扫描线,扫描线相对于固定方位圈0°刻度方向的夹角,与天线发射方向相对于实际船首线的夹角相同,如图示。 3):

9、船首线电路: 将产生的船首线信号,送到显示器,使显示器显示出船首线时,恰为天线向实际船首线方向发射的时刻。如图示。 4): 天线通过波导,与收发机相连。 l 2波导l 雷达波导由铜制成的内部空心外形为矩形的金属管,天线由窄边开缝波导构成,微波传输也由波导完成,所以;我们首先讲解波导。l 1):采用波导的原因:l 天线发射与接收的信号,均为微波信号,微波信号不能用普通导线传输,这是因为微波信号频率太高的原因,下面我们分析之,并提出解决的方法。l A: 趋肤效应:l 由电磁场理论和天线理论知: 频率f上升,导致电流集中在表面,中心无电流,相当于导电体积减少,电阻上升,电阻热损耗上升,同时;使辐射增

10、加,这就是所谓趋肤效应。所以不能采用普通导线。l 1:采用波导传输信号: 雷达波导由铜制成的内部空心外形为矩形的金属管,按边的尺寸分为3cm 、10cm二种。 采用波导后(见图),由电磁场理论知,电流在内表面,所以无辐射。 又由于,内表面的面积,比普通导线的面积大很多,所以电阻热损耗很小。2: 采用波导的若干问题2):波导不能进水,l 否则微波加热积水,使该处发热。l 在收发机入口处、波导接口处l 加入防水云母片。3):另由电磁场理论知:l 波导尺寸与电波波长成正比,损耗与电磁波的振荡模型有关。l 所以;3cm雷达采用波导,10cm雷达因波导太大改用同轴线。l 4): 收发机天线之间的波导管,

11、总长度不宜超过20米,整个波导系统的弯头不 宜超过5个。l 3天线的方向性 天线由窄边开缝波导构成。这种天线,它辐射的电磁波,其空间分布是怎样的? 下面;我们首先介绍天线方向性图这个基本概念,再介绍辐射电磁波的空间分布。1):天线方向性图: 天线方向性图是表示辐射方向,与该方向辐射强度关系的图形。可用场强表示,也可用功率表示。雷达三维方向性图近似为细长的橄榄球。 场强图中,最大值的0.707们的二个线段的夹角;或功率图中,最大值的0.5倍的二个线段的夹角称半功点宽度。 方向性图可分为水平方向性图和垂直方向性图二种。 2):水平波束宽度Hl 天线俯视图中,半功点宽度称为水平波束宽度。H <

12、 2 °,一般H为1°左右。 3):垂直波束宽度v 天线侧视图中,半功点宽度称为水平波束宽度。v=15 ° 30 °防止船舶摇摆时,丢失目标。4):编转角 方向性图中最大值方向与天线的辐射平面的法线方向的夹角称为编转角。编转角与发射频率有关,更换磁控管,编转角将改变。补充: 隙缝波导天线的主瓣轴向与天线窗口法线方向之间约有3.1°-4.1°的偏差。在安装天线时应加以校正 。应调船首线装置,使最大值方向与首线一致。5 ):根据电磁场理论:发射频率愈高,方向性愈尖锐。4:极化电磁波中的电场矢量的方向,称为极化。船舶雷达极化有下列三种: 电

13、场矢量沿水平方向振动的,称水平极化。 电场矢量沿垂直方向振动的,称垂直极化。 电波的电场矢量,作圆周旋转,称圆极化。理论分析及实验表明:l 海浪高<0.25(m);水平极化海浪干扰最小。规定X波段采用水平极化(包括雷达,航标) 。l 海浪高<13(m);垂直极化海浪干扰最小。某些S波段采用垂直极化(主要是雷达)l 由电磁场理论知: l 圆极化波段对称物体,右旋转波变为左旋转,左旋波变为右旋波。l 雨雪,浮简,灯塔为对称物件。易知;使用圆极化可抗雨雪干扰,但易丢失对称目标。天线互易性:l 具有互易性的天线,发射和接收的电波在下列指标上必须相同,否则不能接收:l a):载波频率l b)

14、:极化(若是圆极化必须电场旋向相同)。l 规定:10cm雷达采用圆极化, 3cm雷达一般采用水平极化。l 天线保养:l 雷达天线的辐射窗口暴露在外面,每个月应检查一次,如有灰尘粘在上面,应用清水冲洗掉。l 接收机框图及工作原理l 要点:l 1:船舶雷达探测要得到回波信号中什么物理量?l 2:怎样的电路组成可以实现从目标调制的微波波段的微弱回波信号中得到目标的信息?l 3:怎样使接收机接收回波性能良好?l 1:接收机框图及工作原理 船用雷达的载波,采用微波波段, 目标反射微波时,目标的回波强弱,是由回波信号的包络反映出来的。 接收机的任务就是把包络检测出来。 其框图如下图示。1):混频器混频器由

15、A、B、C三部分组成: A:由速调管组成本机振动器(本振)B:晶体二极管组成混频器电路C:选频电路以上三部分完成混频的功能,也就是把接收信号的频率降低为中频信号。2):放大电路完成低噪放大中频信号的功能, 雷达中频为:30MHz、45MHz、60MHz三种。接收机的机内噪声主要来源于中频放大器。3):检波电路:完成检出用来显示的视频信号的功能 l =海浪干扰=l =海浪或多或少存在,雨雪则不是这样=l =知识点: =海浪干扰与距离、工作波长、风向、极化、脉冲宽度=l =知识点: =海浪干扰定义=l =知识点: =海浪干扰抑制方法、操作注意事项=(CFAR =S波段=对数放大器=园极化=l =l

16、 海浪控制电路(STC):l 要点:l 1:海浪的危害(简述)是什么?l 2:了解海浪回波概念是处理海浪问题的基础,浪回波概念具体是什么?l 3:处理海浪的方法是怎样的?l 4:处理海浪的方法及海浪干扰有什么特点?l 5:这些特点产生什么样的海浪干扰抑制措施?l 5:海浪控制电路(STC):1):海浪回波信号的概念: 在屏幕上;以本船为中心,呈鱼鳞状,近距离强、远距离弱,来风方向强。2):海浪控制电路工作原理: 用一个随时间按指数规律变化的电压去控制中放的增益,使中放的近距离增益大大减小,而随着距离的增加便逐渐恢复正常。3):效果 这样;就能抑制近距离的很强的海浪干扰回波,而使明显的强物标突出

17、出来,但对稍远距离上的目标没有影响。调STC钮,使不丢失近距离小目标为好。 l 海浪干扰特点: 海浪反射雷达电波,从而产生海浪干扰回波,形成屏上以本船周围6 nmile8nmile(风浪大时甚至达3nmile10nmile)内的鱼鳞状闪亮斑点。强海浪为圆盘状亮斑回波。 1干扰回波分布在扫描中心周围,上风舷方向伸展得远且回波强,下风舷稍近一些。 2入射角大即垂直波束宽度宽或天线高度高,则海浪回波强。 3水平波束宽度大,脉冲宽度宽,则反射面积大,回波就强。 4根据电磁场理论;垂直极化波比水平极化产生的海浪回波要强得多。在X和S波段,采用水平极化波与采用垂直极化波相比,海浪干扰减小14110。 5根

18、据电磁场理论;频率高,天线转速慢,干扰回波强。 很强的海浪回波会使荧光屏产生饱和而淹没其覆盖区内的物标回波,甚至会使接收机产生饱和或过载,失去放大能力而丢失物标。 l 海浪干扰抑制措施:l 1、如有双速天线,选用高速天线(如80 r/min)2、选用X波段(3cm)雷达3、选用窄脉冲l 4、采用恒虚警率(CFAR)检测器(使海浪产生的虚警保持恒定)、对数中频放大器(防止荧光屏产生饱和)l 5、使用STC旋钮调节到既不丢失目标,又能抑制海浪干扰。l 在上述操作中:防止丢失小目标是重要的操作原则。l 第七节 雷达显示器l 要点:l 1:怎样计算出距离?l 2:怎样显示出方位?l 3:怎样显示出机内

19、产生的测量信号?l l 显示器框图如右图示:径向扫描部分: 回波及本机产生的信号,这二大类信号经混波电路后,再加到CRT阴极,对电子束进行调制,从而显示出对应的信号。 距离扫描系统使CRT阴极发射的电子束从中心向边缘移动,从而产生某方位的扫描线。完成径向扫描。园扫描部分: 同步接收机电子束的经向扫描方向与天线的电磁波发射方向相同。 为使驾驶员能够进行连续观察,船用雷达显示器的荧光粉是采用长余辉。l 2 某些部分的作用及要求:1):延时线的作用发射机和显示器的组成不同,所以发射和扫描的起点时刻不同,调整延时线,使发射和扫描同时进行。5):抗雨雪干扰电路雨雪回波特点:棉絮状,无明显边缘,从无到有,

20、变化缓慢工作原理: 雨雪回波经过微分,信号为零,如图示。l (一)雨雪、雾、云干扰的特点l 1雾l 只有能见度距离在30m以内的雾对雷达影响(衰减)才校大。一般地;在雷达屏上看不到它的回波。l 2云l 船用雷达的垂直波束宽度一般为15°30°,远处的云块往往也在它的作用范围以内。如果云中水颗粒大(内部有降水现象),在雷达屏上将出现呈密集的点状回波,无明显边缘。如用微分电路,更易看出这一特点。如云块较厚,含水量较大(如雨层云),则回波也较强,与小岛等物标回波相仿。l 3雨雪干扰l 由雨雪反射雷状波产生干扰回波,在屏上形成无明显边缘的疏松的棉絮状连续亮斑区。l 特点:降雨(或雪

21、)量越大,雨点(或雪片)越粗,雷达工作波长越短,天线波束越宽,脉冲宽度越宽,则雨雪反射越强。l (二)雨雪干扰抑制措施l 1、可选用S波段(10cm)圆极化天线雷达。l 2、选用窄脉冲宽度。l 3、用“雨雪干扰抑制”(FTC)控钮或开关加以抑制。l l 顺便指出,有时含水量较高的云层,若高度较低被雷达波束扫到,也会在屏上产生类似于雨雪干扰那样的连续亮斑区。其特点和抑制方法均同于雨雪干扰。了。l 一般来说,小雨不会有反射回波出现,雨的回波特点与云的回波类似,在小雨量情况下,雨回波强度要比船与陆地等的回波弱得多,运用微分电路并适当调节“增益”是不难把它们区分出来的。l 但是在热带大暴雨情况下,却很

22、难把小岛等回波从大暴雨回波中区分出来。在暴雨前,应抓紧时机了解周围海况。l 由于微分电路减弱了回波,探测雨雪区域后的物标,关掉FTC, 适当增大增益 l 探测雨雪区域中的物标,使用FTC,适当减小增益l 6):抗同频干扰电路(1):什么是同频干扰: 二台同波段雷达相互之间的干扰称为同频干扰。根据脉冲重复频率的的不同,干扰回波图像可以分为下列三种。二台雷达脉冲重复频率相差很大,图像为散乱的光点。二台雷达脉冲重复频率很接近,图像为螺旋线状。二台雷达脉冲重复频率相同,图像为辐射状。l (2):抗同频干扰原理 相邻几个脉冲重复周期,目标基本不移动,称为时间相关,而同频干扰则移动,称时间不相关,利用这一

23、属性,可以去除同频干扰。(3):注意事项:干扰过于严重时,换用近量程观测,可减小其影响或选用另一波段雷达工作。使用抗同频干扰功能时,应该关掉FTC(雨雪干扰抑制 ) 第八节 雷达显示方式 雷达采用PPI平面位置显示,显示各要素及基本输入如下:1):固定方位圈: 固定方位圈0°刻度到屏几何中心的连线与船首线平行。2):可动方位圈:可动方位圈由罗经带动其转动,其0°代表真北。3):计程仪:提供对水速度或对地速度。4):主罗经与罗经复子器:二者读数应一致,均表示航向。l 2船首向上图像不稳相对运动显示。1):扫描中心表示本船,始终在屏幕几何中心上。2):船首线始终指固定方位圈0&

24、#176;,代表本船航向。3):转向时,首线不动,图转像动(因为长余辉)。故称为图像不稳。(有些雷达有动圈、可读相对方位、真方位、而另一些雷达只有固圈,只能读相对方位。 )4):无计程仪输入,一般也无罗经输入。 l 4真北向上图像稳定相对运动显示。1):扫描中心代表本船,始终在屏几何中心上。2):固定方位圈0°代表真北方向,首线表示真航向,船舶转向时,首线同步转动。3):可读出真方位,相对方位,图像稳定。4):有罗经输入。特点:窄水道航行时,用来定位。 l 第九节 双雷达流及性能监视器l 一、互换装置l 1目的:为提高工作的灵活性和可靠性。l 2互换部件:l 1):同频双雷达系统:a

25、):天线可以互换。b):收发机可以互换。c):显示器可以互换。d):电源可以互换l 2):导频双雷达系统l a):天线和收发机作为一个整体,可以互换。b):显示器可以互换。c):电源可以互换l 二、性能监视器l 分类:辐射接收总性能监视器,辐射监视器,收发机性能监视器,显示图像,一般分羽毛状。l 第三章 使用性能及影响因素第一节 最大探测距离1定义:最大探测距离Rmax是考虑地球曲率、天线高度、目标高度、电波折射时,雷达观测的最大距离。 第二节 最大作用距离rmax一、几种常见回波特性1船舶回波范围:万吨船:1016海里,救生艇:2海里2浮标:增设角反射器,增强反射能力3冰山:葫芦形冰山反射能

26、力最差4孤立小岛:定位好5陡岸、岬角:定位导航用6过江电缆:回波是一个点回波7快速目标:回波是跳跃式回波(一串回波点,亮度较暗)8平板形物体: 光滑表面(如大建筑物的墙、礁石、冰山、沙滩及泥滩的斜面、没有植物覆盖的山坡等):垂直入射波将全部返回,如入射角不是垂直方向,则反射波偏离雷达而去。 9 粗糙表面(如断裂成很多面的断崖峭壁、覆盖有树林灌木或鹅软石的斜丘等):则不管入射角如何,仍有部分散射波返回雷达。10 球形物体:反射性能很差,表面光滑者尤其如此。11圆柱形物体:如烟囱等,其水平方向的影响与球体相似,垂直方向与平板相似。12锥体:反射性能很差,只有雷达波与其母线垂直时,其反射性能才与圆柱

27、形物体相似。13不同材料:导电性能好的材料其雷达波的反射系数也高。l 第三节 最小作用距离rmin最小作用距离分为二种; rmin1、rmin2 rmin1,rmin2取最小值为rmin,最小作用距离又称盲区。观测法:雷达观测近距离内逐渐靠扰的小船,测出其亮点消失的距离即为盲区。第四节 距离分辨力定义:距离分辨力rmin 表示雷达分辨同方位二个点目标的能力,二个点目标距离小于rmin ,二个目标不能分辨,变成一个目标 。RD量程; d光点直径(或半径); D荧光屏直径(或半径);f 频带宽度一般d和f的影响 可以略去。l 5物标(回波)闪烁引起的误差l 由于本船和物标摇摆及它们之间的相对运动,

28、造成雷达波束照射物标部位的发生变化,引起物标回波的反射中心不稳,从而产生物标回波的闪烁现象,导致测距误差l 6人为测读误差及操作技术l 注:l 1)控钮调节不当 l 2)量程选择不当 l 3)测量选择不当 l 4)测量顺序不当(先测相对本船运动快的目标,后测慢的。) l 5)未垂直观测l 雷达天线高度引起的误差:l 雷达测得的物标距离是天线到物标的距离,不是水平距离,天线越高影响越大,距离越远,影响越小(天线位置移动应注意高度是否改变)。另外天线移动导致波导长度变化,即便高度没有变换,也需要调整延迟线,否则导致测距离误差。l IMO“性能标准”规定,用固定和活动距标测距误差不能超过所用量程最大

29、距离的15或者70m中较大的值。l 三、距离分辨力对雷达显示的图像的影响l 1图像径向(距离)扩展原因:l 1)脉冲宽度(主要原因)l 2)CRT光点直径l 3)目标的闪烁l 距离分辨力r min表示;雷达分辨相同方位二个点目标的能力,公式如下: l 四、测量注意事项:l 1尽量用X波段雷达l 2选择合适的目标l 3选择合适的量程:小量程,目标到2/3半径处。l 4各种控钮调好:使图像清晰、饱满l 5检查测距误差l 6测量选择:雷达地平以内测岸线,地平以外测山峰l 7测量顺序:先测正横方向,后测首尾方向。l 注:l 具体分析如下:l 纵摇加上横摇,引起方位闪烁,方位方向反射中心变化。l 具体为

30、;正横向时,单纯横摇方位不改变,加上纵摇则引起方位闪烁,首尾向时,单纯纵摇方位不改变,加上横摇则引起方位闪烁。l 所以: 纵摇小横摇大,正横向测量时,因为纵摇小,其导致的闪烁引起反射中心改变导致的测距误差小,正横测量优先l 三、方位精度l 影响方位精度的因素主要有下列几种:l 1水平波束宽度及波束形状的不对称l 在测量物标的方位时,通常是以物标回波的中心方位作为物标的方位。若波束形状不对称,则回波的中心位置就可能发生畸变,对方位精度的影响会很明显。l 2方位同步系统的角数据传递误差l 天线的角位置,由方位同步系统传输给显示器,使扫描线与天线作同步旋转。因角数据的传递有误差,使同步旋转产生误差,

31、导致方位误差。l 3船首标志的宽度与精度 l 雷达显示器屏幕上的船首标志线代表本船的船首,此亮线的出现时间应与电磁波波束扫过船首的时间一致。l 另外,船首标苏线的指向还需与方位刻度盘的读数校准,例如在船首向上显示方式时,船首标志线应指方位日度盘的0°。l 船首标志线的宽度过宽,将使校准不精确而产生误差。l 6本船倾斜或摇摆导致的误差l 本船倾斜或摇摆时雷达天线旋转面跟着倾斜,从而使天线扫过的物标方位角与没有倾斜或摇摆时天线扫过的物标方位角不同,显示器扫描线园扫描的方位角度是与没有倾斜或摇摆时天线扫过的物标方位角保持同步的。这项误差在船首尾和正横方向较小,在45° 、135&

32、#176; 、225° 、315°上误差最大。l 7方位测量设备的误差 l 机械方位指针(及其方位刻度盘)或电子方位线(及其读出装置)都有可能存在误差,从而引起方位误差。 l IMO“性能标准”规定,测量位于显示器边缘物标回波的方位,精度应为±1°或优于±1°,即误差不能超过1°。船首标志线的最大误差不能大于±1°,船首标志线的宽度不大于 0 . 5° 。l 8、船摇摆时,选船正平l 测定:选择摇摆方向一致的目标,避开隅点方向(相对船首线)的物标: 45° 、135° 、22

33、5° 、315°。l 实在不能在正平时测量,则测量原则为:纵摇时测首尾方向,横摇时测正横方向。l 在基本正平时,测量方位的次序,简化为:先测首尾方向,再测正横方向四、方位精度对雷达显示的图像的影响图像横向(方位方向)扩展的因素: 1)天线水平波束宽度H(荧光屏边缘是主要因素,如下图) 2)CRT光点直径(荧光屏中心是主要因素) 3)目标闪烁 很小目标在水平方向扩展H,也就是二边各扩展H / 2,所以,二目标切向距离接近于H则不能分辨,光点直径不随量程改变而发生变换,所以;可减小量程来提高方位分辨率。l 第八节 各类假回波1:间接反射假回波: 船上的烟囱、前桅、吊杆柱及其附近

34、的大船、陆上的高大建筑物等,能阻挡雷达波的传播,而在其后方形成阴影扇形区。同时,它们又能作为二次辐射源向外辐射雷达天线发射的电波,并接收其他物标对二次辐射的反射回波,再将该反射回波辐射至天线。这种回波,我们称其为间接反射假回波。l 多次反射假回波:假回波一般由正横方向的宽大目标引起,雷达发射波在目标与本船的两边多次反射,形成多次反射假回波。l 二类故障信号:l 海浪干扰、雨雪干扰中,有时混有下列故障信号,下面给出分析:l 1:电火花干扰l 雷达屏上出现的电火花干扰有多种。有的是在固定位置出现不规则的径向亮线,一般是偏转线圈电刷和滑环接触不良引起的。有的是位置不定的径向亮线,可能是机内电源、发射

35、机、接收机等有关器件跳火形成的,这是故障,应即检查、排除后使用。l 2: 明暗扇形l 在使用自动频率跟踪时,荧光屏上有时会出现明暗扇形图像,是自动频率跟踪控制电路(AFC)失调所引起的。应改用“手控”工作,待自动跟踪电路正常后方可改用“自控”工作。 主要控钮及一般操作步骤开机1):合上船电闸刀:加热电阻通电,用来驱潮。然后启动中频电源。2):雷达电源开关:置于“standby”3):合同“天线开关”;决定矢线是否转动4):调节:照明亮度5):选择“显示方式”;先选“首向上相对运动”方式6):选择“量程”;1.狭水道用近量程,2.开阔海域用远量程,3.所测目标在1/22/3层范围转换“量程”前,

36、先将“亮度关小”。7):调节“亮度”;顺时针调节旋纽,使扫描线刚见未见。8):调节“固标亮度”;使屏幕上出现距离围。(使用时调大固标亮度,不用时减少亮度,使屏清晰)。9):调节“聚焦”,使固标围最细。10):调节“扫描中心”;使之对准屏中心。11):调节“首线校正纽”共首线对0°,使之指0°(使用活标时固标亮度,不用时减少亮度,使屏清晰)12):调节,“活标亮度”;校核活标固标二者读数是否一致,关掉固标,调小活标亮度13):调节,“EBL亮度”;校核EBL方位读数与固定方位图读数是否一致,调小EBL亮度。l 14):调节“增益”;使屏上噪声班点刚见未见。15):雷达电源开关

37、:置于“on”;置于“standby”上的时间已超过3min。16):调节“调谐”;使屏上回波图像多,且饱满清晰。17):检查分罗经读数与主罗经读数是否一致,不一至则校准之。18):调节“可动方位置”,使之与主罗经读数一致。19):调节“STC”、“FTC”、“同频干状抑制”;清除相应的干扰回波,并尽量不丢失小目标(STC海浪,FTC雨雪) 。其中“FTC”和“同频干状抑制”不能同时使用,细中对应抗饱和,极化选择抗雨雪、浪20):选用航速输入方式:模拟真运动速度输入/计程仪速度输入0(对地速度:导航)(对水速度避碰)。21):根据风流及航速偏转:输入适当的航迹校正值。22):酌情选择航速输入模

38、式(计程仪/模拟) 23):检查调整分罗经航向,使其与主罗经一致。l 24):如选用“模拟速度真运动”则用速度调节钮调节输入的船速。25):根据风流和航迹的偏移情况,适当输入航迹校正值。26):用“中心重调”钮,调节扫描中心起始位置。关机:1):雷达电源开关,转到“standby”。2):将“亮度”,“STC”等反时针旋到底。3):天线开关,置于“off”。4):雷达电源开关,转到“off”。5):关闭中频电源,再断开“船电闸刀”。第三、四、五节 杂题l 1):收发机和磁罗经的大于说明书规定值。l 2):雷达电源和通讯电源不可放在一起。l 3):天线辐射口,至少每半年清除一次,用软湿布,软毛刷

39、,清水洗净不准加涂油漆。l 4):荧光屏用干的软布轻轻抹去灰尘。l 5):修船时,雷达每周开机一次,每次加电30分钟。l 6):雷达目纪见书P101,共6小桌。l 7):雷达天线安装高度,不超过30米。l 8):波导养保,检查是否开裂,进水及密封情况。l 第五章 雷达定经与导航l 1正确选择定位物标的原则:l 1):选清晰稳定,海图上精确标识的目标回波。(如孤立小岛、岬角等。避免选用平坦的岸线、山坡等回波有严重变形或位置难以在海图上确定)l 2):选择近的物标:近距物标定位精度高,特别是测方位。尽可能用测距定位,不用测方位定位,因为雷达测距精度高于测方位。l 3):三条位置立角120°

40、;二条位置线立角90°l 2定位优劣次序:l 雷达测距精度高于测方位。尽可能用测距定位,不用测方位定位。所以有下列定位次序。l 1):三目标距离定位l 2):二目标距离+一目标方位l 3):二目标距离l 4):二目标方位+一目标距离l 5):一目标距离+方位l 6):三目标方位l 7):二目标方位。l 雷达导航方法:l 连续短时间定位、距离避险线(又称雷达安全距离线)法、方位避险线(又称安全方位线)法三种。l 一、距离避险线法l 使船舶在航行中离岸 、或选定目标点(参考物标)保持一定距离,从而确保航行安全。l 注:l 距离避险线由各危险点(包括浅滩、暗礁等)的安全距离圈的切线组成(参

41、见图中虚线)。图中的实线表示船舶的计划航线。航行时必须使船舶始终保持在距离避险线的外侧。 l 雷达安全距离的选定,由驾驶员或船长根据当时当地的情况(如天气情况、能见度情况、流向、流速、船舶类型及密度等)、本船操纵性能、值班驾驶员的技术状态等决定。l 1适用范围:当各危险点与计划航线接近垂直时可用距离避险l 2实际操作时,可用方位标尺线协助:将方位标尺指向航向,并用活动距标圈定出避险线距离相对应的一根平行方位标尺线(避险方位标尺线),航行时随时保持使危险物标(上述各危险点)的回波处在上述避险方位标尺线的外侧即可。二、方位避险线法 当船舶的航向和岸线或多个危险物连线的方向近于平行时,为了安全地避离

42、航线附近的危险物标,可用方位避险线来表明危险物标的所在方位。航行中,应将物标回波始终放在方位避险线外侧,船首线始终放在方位避险线的安全一侧。注: 在海图上求得物标的危险方位,在显示器上将方位标尺置于该危险方位(真方位)上。 航行中,应将物标回波始终放在方位避险线外侧,船首线始终放在方位避险线的安全一侧。船首线与方位避险线之间距可由活动距标指示,应随时核实船位,保证船位确实位于方位避险线的安全一侧,如图所示。图中,左侧是危险的,右侧是安全的。1适用:当船舶的航向和岸线或多个危险物连线的方向近于平行时。2使用方法:使参考物标处于方位避险线(平行标尺)的外侧,以此来保障航向安全。3、导航注意事项采用

43、避险线法时,应注意下列问题:1) 制定计划航线,选好参考物标,设定好避险线。2) 应有合适的雷达参考物标、 特点明显不易搞错 、回波亮而清晰 、测距误差小3)雷达选择对地真运动、北向上、量程合适 大海上通常选择12海里量程。每隔510 min变换量程(大、小)4)雷达目标的航向航速作图求解,ARPA可由自动计算标绘得到。l 2雷达方位信标(Ramark)(有源主动式) 按一定时间间隔,向四周发射信号,在雷达上的图像为经向亮线、或小扇形,指示雷达方位信标所在方位。A):雷达方位信标组成及特点如下:1)只有发射机,雷达方位信标的工作不受船上雷达控制。所以是有源、主动式信标。 2)它按一定时间间隔(

44、如15s)向四周发射信号。雷达收到后,在荧光屏上显示出一条径向亮线、或一个夹角为1度3度的点线或扇形,以指示出该信标所在方位。 3)为了区分各个不同位置的雷达方位信标,雷达方位信标发的信号用“点”“划”组成莫尔斯码来加以相互区别。4)只能测方位。B):雷达方位信标类型:雷达方位信标分为扫频式和固定频率式两类:扫频式的发射频率是变化的,变化范围可包括船用雷达使用的整个频率范围(现大多工作在X波段) 。固定频率式的发射频率在船用雷达工作频率范围之外,需另配一套接收设备才能接收。其优点是可视需要关掉接收设置,保持雷达屏幕清晰。 当雷达方位信标信号很强时,可能在雷达屏上产生间接假回波和旁瓣假回波,这种

45、假回波可用FTC(微分电路)电路消除之。 雷达方位信标发射的信号比物标回波强得多,故作用距离远,一般可达20nmile30nmile,作为重要识别标志,安装在狭水道、重要屿和山等其他物标密集区及海岸线平坦、低缓难以被雷达探测和分辨的地区。l 3雷达应答标(Racon)雷达应答标又称雷康(Racon),(有源被动式) 雷康在接收到雷达的发射信号后,约经过05微秒,便自动发出经编码的回答脉冲信号,故又称之为“雷达应答器”或“二次雷达”。是一种被动式的有源雷达信标。雷达应答标组成及特点如下:组成:天线、接收机、发射机、电源等。特点:1)雷达可以测得雷达应答标的方位和距离。(与雷达测量目标距离方位类似

46、,测量距离应减去05微秒乘以电波速度)2)常用的雷康信号,把发射的脉冲编成莫尔斯码,如A(一),B(一),N(一·)等。故便于相互识别。3). 雷康可在整个船用雷达工作频率范围内产生脉冲信号(一般是X波段,少数也有S波段 )4). 大多数雷康发射机工作几分钟(如1.5min)再停几分钟,故雷达屏上每隔一定时间,才能见到它的回答信号。 雷康一般探测距离在十几海里以内,理想情况下,可达17nmile30nmile。4、搜救雷达应答器SART1)信号特征:同一方位上连续、等间隔12点,12个点代表8 nmile长。2)工作波段和极化方式:X波段,水平极化。 3)频率:扫频式,频率范围为:9

47、2009500MHZ4)使用注意:有意调偏本振频率(使接收机处于失谐状态),合理选择量程,关闭FTC或A/C RAIN开关、增益调到大。这样做的目的是使接收机处于失谐状态,使其他回波或海浪干扰消失或减弱,而SART信号能正常显示。 第二篇 ARPA第二篇 ARPA第一节 雷达避碰的局限性一、基本概念1): 速度矢量: 经过设定的时间,目标按现有速度航行到新的位置,现在的船舶位置到新位置的长度表示速度大小,现在的船舶位置到新位置的方向为速度矢量的方向。2): CPA和TCPACPA: 它船离本船的最近距离/最接近点,TCPA: 到最接近点所需时间。设置MINCPA的依据:船的大小,机动性及海域开

48、阔程度,一般在海上航行时,要求MINCPA:2-3海里设置MINTCPA一般不小于15分钟。3): 安全船和危险船的区分 CPAminCPA 安全船 TCPAminTCPA CPAminCPA 危险船 TCPAminTCPA CPAminCPA 0TCPAminTCPA 非常危险船l ARPA主要组成、功能接 口: 将模拟信号变成数字信号,既模/数转换。预处理:包括抑制杂波和信号量化。检测:凡满足目标存在的判断条件的回波,判断为目标。录取: 用人工或自动的方式,将已经检测到的信号送跟踪器。跟踪器: 对已被录取的目标进行自动跟踪,建立目标的运动轨迹计算器: 用于控制录取、跟踪、计算参数及自动标绘

49、。PPI综合显示器: 显示目标回波信号、本船、各类图形字符等。数据显示器:目标相对航向、真航速、距离、方位,CPA.TCPA。其中;操作者最关心的是目标的距离和方位。 (故障:方位数据连续闪烁,需要重调罗经)l 第二章 ARPA基本工作原理第一、二节1):目标检测: 在杂波背景中,判断目标是否存在,采用MOON判据(M/N)准则。其中;N为探测次数,M为积累次数如:M/N=6/8在连续8次探测中出现回波的次数为6次,判断为存在目标。 2):人工录取: IMO规定: ARPA必须要有人工录取,人工清除功能.优先次序:近距离>船首向>右舷>左舷特点:费时间,录取速度慢。3):自动

50、录取排队控制:按目标距离,方位及发现时间,编码从而使之有序地进入计算机。辅助控制:在排队控制处输入辅助控制,使数据有序进入计算机(能不能进,进的先后次序)提高录取的目的性。 l 辅助控制的几种方法:设置优先区,如图I区II区III区设置限制区,ARPA拒绝录取区如,陆地、岛屿设置警戒圈,对闯入成圈的目标报警并自动录取和跟踪。(已在圈内的目标不报警,也不录取)自动录取的缺点:容易造成虚假录取。IMO规定: 只有人工录取功能的ARPA,录取目标总数 10。具有自动人工录取功能的ARPA,录取目标总数 20。IMO 规定;ARPA 有效距离范围至少为12海里或16 海里。录取跟踪,受最大作用距离,最

51、小作用距离,最大速度限制。4):录取满了已后,应清除一个不太危险的目标,才能再录取一个。波门设置:初始录取目标时,用大波门,初始建立跟踪后用中波门,进入稳跟踪后用小波门。l 5):自动跟踪的局限性。目标丢失:下列情况容易目标丢失a) 目标变弱(易于噪声混淆)b)杂波干扰(杂波目标叠合)c)目标快速机动d)机内特大误差 连续跟踪的条件:在10 圈天线扫描中,有5 次能清楚显示目标跟踪范围: 一般为1海里至24多海里。 情况不明、或初始阶段故用大波门,以后可减小为中、小波门。l 6):误跟踪 二个或二个以上的目标,同时落入一个跟踪波门,从而引起跟踪错误的现象。7):误跟踪种类二个同向行驶的目标逐渐靠近二个被跟踪的目标对驶靠近被跟踪目标靠近岸边,则误跟踪到陆地。8):采取的措施a)拒绝人工录取正在逼近另一个已被跟踪目标的目标b)二个被跟踪目标靠近,ARPA停止跟踪,让波门滑行,直到二者分开。c)跟踪门波内出现2个目标,只跟踪最接近波门中心的目标d)缩小跟踪窗尺寸下列情况ARPA不予跟踪计算:1:目标的相对速度超过限定值 2:目标尽寸大于跟踪窗。3:目标在较远的距离上占据50以上方位宽度。 9)所谓虚警是指把不存在目标判为有目标。所谓漏井是指把存在的目标判为没有目标。ARPA

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论