切线方程与切点弦方程_第1页
切线方程与切点弦方程_第2页
切线方程与切点弦方程_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、切线方程与切点弦方程、圆的切线方程、圆的方程为 :(x - a) 2 + (y - b) 2 = r 2 1. 已知:圆的方程为 :(x - a)2 + (y - b)2 = r2, 圆上一点 P(x0, y0)。求过点 P 的切线方程解:圆心 C(a, b);直线 CP 的斜率:ki = ( yo- b)/( xo- a)因为直线CP与切线垂直,所以切线的斜率:k2 = -1/ki = - (xo - a) / (yo - b)根据点斜式 , 求得切线方程:y - yo = k2 (x - xo)y - yo =- (xo - a) / (yo - b) (x - xo)整理得: (x -

2、xo)(xo - a) + (y - y o)(y o - b) = o(切线方程公式 )展开后: xox - ax + axo + yoy - by + byo - xo2 - yo2 = o(1)因为点P在圆上,所以它的坐标满足方程:(xo - a)2 + (yo - b)2 = r2化简: xo2 - 2axo + a2 + yo2 - 2byo + b2 = r2移项: - xo2 - yo2 = -2axo - 2byo + a2 + b2 - r2(2)由(2)代入(1), 得: xox - ax + axo + yoy - by + byo + (-2ax o - 2byo +

3、a2 + b2 - r2) = o 化简: (xox - ax - axo + a2) + (yoy - yb- byo + b2) = r2 整理: (xo - a)(x - a) + (y o - b)(y - b) = r 2变式-1 已知:圆的方程为 :(x - a)2 + (y - b)2 = r2 , 圆外一点 P(xo, yo)二、对于圆的一般方程 :x2 + y2 + Dx + Ey + F = o, 过圆上的点的切线方程 .2.已知:圆的方程为 :x2 + y2 + Dx + Ey + F = o, 圆上一点 P(xo, yo)解: 圆心 C( -D/2,-E/2 )直线 C

4、P 的斜率:ki = (yo + E/2) / (x o + D/2)因为直线CP与切线垂直,所以切线的斜率:k2 = -1/ki = - (xo + D/2) / (y o + E/2) 根据点斜式 , 求得切线方程:y - yo = k2 (x - xo)y - yo =- (xo + D/2) / (y o + E/2) (x - xo)整理得 :xox + yoy + Dx/2 + Ey/2 - Dx o/2 - Eyo/2 -xo2 - yo2 = o(3)因为点P在圆上,所以它的坐标满足方程:xo2 + yo2 + Dxo + Eyo + F = o 移项: - xo2 - yo2

5、 = Dxo + Eyo + F由(4)代入(3),得:xox + yoy + Dx/2 + Ey/2 - Dx o/2 - Eyo/2 + Dxo + Eyo + F = 0整理,xox + yoy + D(x + x o)/2 + E(y + y o)/2 + F = 0变式-2 已知:圆的方程为:x2 + y2 + Dx + Ey + F = 0 , 圆外一点P(xo, yo)二、圆的切点弦方程证明:遼尸h ,y0)工鼠辻点P柞圖4?的妁两卷切虬切点是召,卿直戏拙 的牙裂足+ i'0i-十乏t D-如!空E十F 0一UW:点平肴叮于识晶壮一洼应 逼耳C 屛 只匚於衽说兮虽齢酋詢相

6、畫艺.以P.C为宝.疵肚血韵芭的左;丄更-(.t +-a)亠Q' * f)F -l-'c) = o. *即x1 + r* + (半-xc)x + (y Jt3)y -t- yj( 一 0x' + tJ + Z>.t + 7" = 0怎三、圆锥曲线的切线方程和切点弦方程设P(xo, yo)是圆锥曲线上(外)一点,过点P引曲线的两条切线, 切点为A , B两点,则A , B两点所在的直线方程为切点弦方程。标准方程切点弦方程圆(x-a)1 +(丁一6 =r(Xo -住)(x- u) +00 b)(y - ® 二厂+y: + Dx-EyF = 05+ J V.J + VL cgx4 1-Oy+2+ " 2 EF = 0椭圆二十匸= 1(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论