![高考数学试题分类汇编_专题直线与圆_理_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/12/d9039822-ecc0-42fd-8328-d0aea0404f06/d9039822-ecc0-42fd-8328-d0aea0404f061.gif)
![高考数学试题分类汇编_专题直线与圆_理_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/12/d9039822-ecc0-42fd-8328-d0aea0404f06/d9039822-ecc0-42fd-8328-d0aea0404f062.gif)
![高考数学试题分类汇编_专题直线与圆_理_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/12/d9039822-ecc0-42fd-8328-d0aea0404f06/d9039822-ecc0-42fd-8328-d0aea0404f063.gif)
![高考数学试题分类汇编_专题直线与圆_理_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-1/12/d9039822-ecc0-42fd-8328-d0aea0404f06/d9039822-ecc0-42fd-8328-d0aea0404f064.gif)
![高考数学试题分类汇编_专题直线与圆_理_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-1/12/d9039822-ecc0-42fd-8328-d0aea0404f06/d9039822-ecc0-42fd-8328-d0aea0404f065.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2011年高考试题数学(理科)直线与圆一、选择题:1(2011年高考江西卷理科9)若曲线:与曲线:有四个不同的交点,则实数m的取值范围是 A(,) B(,0)(0,) c, D(,)(,+)答案:B 解析:曲线表示以为圆心,以1为半径的圆,曲线表示过定点,与圆有两个交点,故也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应,由图可知,m的取值范围应是2.(2011年高考重庆卷理科8)(8)在圆内,过点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为(A) (B) (C) (D)二、填空题:1.(2011年高考安徽卷理科15)在平面直角坐标系中
2、,如果与都是整数,就称点为整点,下列命题中正确的是_(写出所有正确命题的编号).存在这样的直线,既不与坐标轴平行又不经过任何整点如果与都是无理数,则直线不经过任何整点直线经过无穷多个整点,当且仅当经过两个不同的整点直线经过无穷多个整点的充分必要条件是:与都是有理数存在恰经过一个整点的直线【命题意图】本题考查直线方程、直线过定点、充分必要条件、存在性问题、命题真假的判定,考查学生分析、判断、转化、解决问题能力,此类问题正确的命题要给出证明,错误的要给出反例,此题综合性较强,难度较大.【答案】【解析】正确,设,当是整数时,是无理数,(,)必不是整点.不正确,设=,=,则直线=过整点(1,0).正确
3、,直线经过无穷多个整点,则直线必然经过两个不同整点,显然成立;反之成立,设直线经过两个整点,则的方程为,令=(),则Z,且=也是整数,故经过无穷多个整点.不正确,由知直线经过无穷多个整点的充要条件是直线经过两个不同的整点,设为,则的方程为,直线方程为的形式,=,Q,反之不成立,如,则,若Z,则Z,即,Q,得不到经过无穷个整点.正确,直线=只过整点(1,0).2.(2011年高考重庆卷理科15)设圆位于抛物线与直线所组成的封闭区域(包含边界)内,则圆的半径能取到的最大值为 解析:。 为使圆的半径取到最大值,显然圆心应该在x轴上且与直线相切,设圆的半径为,则圆的方程为,将其与联立得:,令,并由,得
4、:三、解答题:1. (2011年高考山东卷理科22)(本小题满分14分)已知动直线与椭圆C: 交于P、Q两不同点,且OPQ的面积=,其中O为坐标原点.()证明和均为定值;()设线段PQ的中点为M,求的最大值;()椭圆C上是否存在点D,E,G,使得?若存在,判断DEG的形状;若不存在,请说明理由.【解析】(I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称,所以因为在椭圆上,因此又因为所以;由、得此时 (2)当直线的斜率存在时,设直线的方程为由题意知m,将其代入,得,其中即(*)又所以因为点O到直线的距离为所以,又整理得且符合(*)式,此时综上所述,结论成立。 (II)解法一: (1)当
5、直线的斜率存在时,由(I)知因此 (2)当直线的斜率存在时,由(I)知所以所以,当且仅当时,等号成立.综合(1)(2)得|OM|·|PQ|的最大值为解法二:因为所以即当且仅当时等号成立。因此 |OM|·|PQ|的最大值为 (III)椭圆C上不存在三点D,E,G,使得证明:假设存在,由(I)得因此D,E,G只能在这四点中选取三个不同点,而这三点的两两连线中必有一条过原点,与矛盾,所以椭圆C上不存在满足条件的三点D,E,G.2. (2011年高考广东卷理科19)设圆C与两圆中的一个内切,另一个外切.(1)求C的圆心轨迹L的方程.(2)已知点且P为L上动点,求的最大值及此时点P的
6、坐标.【解析】(1)解:设C的圆心的坐标为,由题设条件知化简得L的方程为 (2)解:过M,F的直线方程为,将其代入L的方程得解得因T1在线段MF外,T2在线段MF内,故,若P不在直线MF上,在中有故只在T1点取得最大值2。3(2011年高考福建卷理科17)(本小题满分13分)已知直线l:y=x+m,mR。(I)若以点M(2,0)为圆心的圆与直线l相切与点P,且点P在y轴上,求该圆的方程;(II)若直线l关于x轴对称的直线为,问直线与抛物线C:x2=4y是否相切?说明理由。【命题意图】本题考查圆的方程、直线与圆相切知识、两直线的位置关系、直线与抛物线位置关系等基础知识,考查函数与方程思想、数形结
7、合思想、分类与整合思想,是中档题.【解析】(I)由题意知(0, ),以点(2,0)为圆心的圆与直线相切与点,=,解得=2,圆的半径=,所求圆的方程为;(II)直线关于轴对称的直线为,:,:,代入得,=,当1时,0,直线与抛物线C相交;当=1时,=0,直线与抛物线C相切;当1时,0,直线与抛物线C相离.综上所述,当=1时,直线与抛物线C相切,当1时,直线与抛物线C不相切.【点评】本题考查内容和方法很基础,考查面较宽,是很好的一个题.4(2011年高考上海卷理科23)(18分)已知平面上的线段及点,在上任取一点,线段长度的最小值称为点到线段的距离,记作。(1)求点到线段的距离;(2)设是长为2的线段,求点集所表示图形的面积;(3)写出到两条线段距离相等的点的集合,其中,是下列三组点中的一组。对于下列三组点只需选做一种,满分分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年全球及中国生物基FDCA(2,5-呋喃二甲酸)行业头部企业市场占有率及排名调研报告
- 聘用临时工合同范本
- 锚杆劳务分包合同
- 塔吊司机劳动合同
- 小企业劳动合同
- 劳务合同报酬
- 小产权房房屋租赁合同
- 大货车货物运输合同
- 知识产权合同条款分析
- 城区中心亮化维修工程采购合同
- 改革开放教育援藏的创新及其成效
- 第3课+中古时期的西欧(教学设计)-【中职专用】《世界历史》(高教版2023基础模块)
- 山东省济宁市2023年中考数学试题(附真题答案)
- 班组建设工作汇报
- 供应链金融与供应链融资模式
- 工程类工程公司介绍完整x
- 板带生产工艺热连轧带钢生产
- 关键工序特殊过程培训课件精
- 轮机备件的管理(船舶管理课件)
- 统编《道德与法治》三年级下册教材分析
- 国际尿失禁咨询委员会尿失禁问卷表
评论
0/150
提交评论