示范教案(三角函数的诱导公式)_第1页
示范教案(三角函数的诱导公式)_第2页
示范教案(三角函数的诱导公式)_第3页
示范教案(三角函数的诱导公式)_第4页
示范教案(三角函数的诱导公式)_第5页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、示范教案(三角函数的诱导公式)作者:日期:1.3三角函数的诱导公式 整体设计 教学分析本节主要是推导诱导公式二、三、四,并利用它们解决一些求解、化简、证明问题.本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化 简、证明等问题.在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导 入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体现,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识,特别是在本课时

2、的三个转化问题引入后,为什么确定180。+痈为第一研究对象,-“角为第二研究对象,正是化归思想的运用.公式二、公式三与公式四中涉及的角在本课的分析导入时为不大于90。的非负角,但是在推导中却把a拓广为任意角,这一思维上的转折使学生难以理解,甚至会导致对其必要性的怀疑,因此它成为本课日的难点所在.课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角.学生第一次接触到此题型 ,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可 转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习. 三维目标1 .通过学生的探究,明了三角函数的

3、诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.2 .通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用 .3 .进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一提高分析问题和解决问题的能力.重点难点教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.教学又t点:六组诱导公式的灵活运用. 课时安排 2课时教学过程第1课时 导入新课思路1.利用单位圆表示任意角的正弦值和余弦值.复习诱导公式一及其用途.思路2.在前面的学习

4、中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0。到360°(0到2 nt内的角的三角函数值求锐角三角函数值,我们可以通过查表求得,对于90。到360。(3到2nt范围内的角的三角函数 怎样求解,能不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题. 推进新课新知探究 提出问题由公式一把任意角a转化为0 ,360 )内的角后,如何进一步求出它的三角函数值?活动:在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得

5、.教师可组织学生思考讨论如下问题:0到90。的角的正弦值、余弦值用何法可以求得 ?90。到360。的角3能 否与锐角 a相联系?通过分析 3与a的联系,引导学生得出解决设问的一种思路:若能把求90。,360 )内的角3的三角函数值,转化为求有关锐角a的三角函数值,则问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.图15 / 13讨论结果:通过分析,归纳得出:如图1.180a,90,180,3= 180a,180,270,360a,270 ,360 ,提出问题锐角a的终边与180° +痈的终边位置关系如何 ?它们与单位圆的交点的位置关系如何?任意角a

6、与180° +现?活动:分a为锐角和任意角作图分析:如图2.图2引导学生充分利用单位圆,并和学生一起讨论探究角的关系.无论a为锐角还是任意角,180。+的终边都是 a的终边的反向延长线,所以先选择180。+初 研究对象.利用图形还可以直观地解决问题,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P(x,y)和P' -X,-y).指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二:sin(180 ° +sii)= a ,cos(180 °-cos )=.并指导学生写出角为弧度时的关系式:sin( 兀 +-s杆 a ,cos( 兀-

7、+os)= ,tan( 兀 + a )=tan a .引导学生观察公式的特点朋了各个公式的作用.讨论结果:锐角a的终边与180° +角的终边互为反向延长线.它们与单位圆的交点关于原点对称.任意角a与180。+角的终边与单位圆的交点关于原点对称.提出问题有了以上公式,我们下一步的研究对象是什么?-a角的终边与角a的终边位置关系如何?活动:让学生在单位圆中讨论-a与a的位置关系,这时可通过复习正角和负角的定义,启发学生思考:任意角a和-a的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二的推导过程,由学生自己完成公式三的推导,即:sin(- a )=sin a

8、 ,cos( )=cos a ,-an()=tan a .教师点拨学生注意:无论a是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三 的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值讨论结果:根据分析下一步的研究对象是-a的正弦和余弦.-a角的终边与角a的终边关于X轴对称,它们与单位圆的交点坐标的关系是横坐标相等,纵坐标互为相反数.提出问题下一步的研究对象是什么?乃a角的终边与角a的终边位置关系如何 ?活动:讨论 乃a与a的位置关系,这时可通过复习互补的定义,引导学生思考:任意角a和上a的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公

9、式二、三的推导过程,由学生自己完成公式四的推导,即:sin( -砍尸sin (X ,cos( )=cos a ,tan( a )=-tan a .强调无论a是锐角还是任意角,公式均成立.引导学生观察分析公式三的特点,得出公式四的用途:可将求 市a角的三角函数值转化为求角a的三角函数值.让学生分析总结诱导公式的结构特点,概括说明,加强记忆.我们可以用下面一段话来概括公式一一四:a +k - 2 £ Z),-a ,兀的后角函数值,等于a的同名函数值,前面加上一个把a看成锐角时原函数值的符号.进一步简记为:函数名不变,符号看象限”点拨、引导学生注意公式中的a是任意角.讨论结果:根据分析下一

10、步的研究对象是乃a的三角函数;乃a角的终边与角a的终边关于y轴对称,它们与单位圆的交点坐标的关系是纵坐标相等 ,横坐标互为相反数.示例应用思路1例1利用公式求下列三角函数值:(1)cos225 ;(2)sin 1;(3)sin( 16-);(4)cos(-2 040 ).°33活动:这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合解决这个问题.-2解:(1)cos225 =cos(180 +45 )=-cos45 = 2,(2)sin11 一一, 、.3=sin(4 % )=-sin = ;(

11、3)sin(口)=-sin旦=-阿5-)333=-(-sin、33)=T;(4)cos(-2 040 尸cos2 040 =Cos(6 360 -120 )=cos120 =cos(180 -60 )=-cos60 = .2点评:利用公式一一四把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行两公式15 / 13上述步骤体现了由未知转化为已知的转化与化归的思想方法 变式训练利用公式求下列三角函数值:17cos(-51015 );(2网吃兀).解:(1)cos(-510° 15'尸cos510° 15'=cos(360=cos150 °=-

12、cos29+150° 15') 15' =cos(-29)° 45') 45-0.868 2;(2)sin( £ 兀)=sin(-3X 2 兀)=咫= 例2 2007全国高考,1cos330 等于()1A. -21B.2,3 C.23D.2答案:C变式训练1 2sin290 cos430化间:-sin 250 cos790解:/ 2sin 290 cos430sin 250 cos790_ 1 2sin(36070 )cos(36070 )sin(18070 ) cos(72070 )1 2sin70 cos70 | cos70 sin 7

13、0 | sin 70 cos70 cos70 sin 70sin 70 cos70= 1 .cos70 sin 70例 3 化简 cos315 +sin(-30 )+sin225 +cos480°.活动:这是要求学生灵活运用诱导公式进彳T变形、求值与证明的题目.利用诱导公式将有关角的三角函数化为锐角的三角函数,再求值、合并、约分.解:cos315 +sin(-30 )+sin225 +cos480°=cos(360 -45 )-sin30 +sin(180 +45 )+cos(360 +120 )=cos(-45 )° - sin45 + cos120 °

14、; 2=cos45 ° - +cos(180 -60 )22-21.2= -cos60 = -1.222点评:利用诱导公式化简,是进行角的转化,最终达到统一角或求值的目的.变式训练 求证:史0一国涯一匹仁一)tan(cos )sin(5 )分析:利用诱导公式化简较繁的一边,使之等于另一边证明:左边=担小匣史年代)(cos )sin(5 )tan( )sin( ) cos()(cos )sin( )。右边.tan sin cos =tancos sin所以原式成立.规律总结:证明恒等式,一般是化繁为简,可以化简一边,也可以两边都化简 知能训练课本本节练习13.解答:1.(1)-cos&

15、#167;;(2)-sin1;(3)-sin ;(4)cos70° 6'.点评:利用诱导公式转化为锐角三角函数.2.(1) 1 ;(2) 1 ;(3)0.642 8;(4), 3 .222点评:先利用诱导公式转化为锐角三角函数,再求值.3.(1)-sin2 a cos a ;(2)名in.点评:先利用诱导公式变形为角a的三角函数,再进一步化简.课堂小结本节课我们学习了公式二、公式三、公式四三组公式,这三组公式在求三角函数值、化简三角函数式及证明三角恒等式时是经常用到的,为了记牢公式,我们总结了函数名不变,符号看象限”的简便记法,同学们要正确理解这句话的含义,不过更重要的还是应

16、用,我们要多加 练习,切实掌握由未知向已知转化的化归思想.作业 课本习题1.3 A组2、3、4.设计感想一、有关角的终边的对称性(1)角a的终边与角 兀+的终边关于原点对称.(2)角a的终边与角-a的终边关于X轴对称.(3)角a的终边与角 市a的终边关于y轴对称.二、三角函数的诱导公式应注意的问题(1) a +k 王二*”,兀的三角函数值等于a的同名函数值,前面加上一个把a看成锐角时原函数的符号;可简单记忆为:函数名不变,符号看象限.”(2)公式中的a是任意角.(3)利用诱导公式一、二、三、四,可以把任意角的三角函数值转化为锐角的三角函数值.基本步骤是:任意负角的三角函数公式三或一相应的正角的

17、三角函数公式一 0到2兀角的三角函数 公式二'四锐角的三角函数查表 三角函数.即负化正,大化小,化为锐角再查表.(设计者:沈献宏) 第2课时导入新课上一节课我们研究了诱导公式二、三、四.现在请同学们回忆一下相应的公式.提问多名学生上黑板默写公式.在此基础上,我们今天继续探究别的诱导公式,揭示课题. 推进新课 新知探究 提出问题终边与角a的终边关于直线y=x对称的角有何数量关系?活动:我们借助单位圆探究终边与角a的终边关于直线y=x对称的角的数量关系.教师充分让学生探究,启发学生借助单位圆,点拨学生从终边关于直线y=x对称的两个角之间的数量关系,关于直线y=x对称的两个点的坐标之间的关系

18、进行引导.图3讨论结果:如图3,设任意角e的终边与单位圆的交点Pi的坐标为(x,y),由于角万-”的终边与角a的终边关于直线 y=x对称,角万-a的终边与单位圆的交点P2与点Pi关于直线y=x对称,因此点P2的坐标是(y,x),于是我们有 sin a =y,cos a =x,COS( - a尸y,sin - a)=x.从而得到公式五:cos( - a )=sin a ,sin( - a 尸cos a .提出问题能否用已有公式得出 一+a的正弦、余弦与 a的正弦、余弦之间的关系式 ?2活动:教师点拨学生将 一+a转化为 乃(一-a队而利用公式四和公式五达到我们的目的22因为-+ a可以转化为 M

19、-a所以求-+a角的正余弦问题就转化为利用公式四接着转化为利用公式五,这时可以让学生独立推导公式六.讨论结果:公式六Sin( + a )=cos a ,cos(- + a )=sin a .提出问题你能概括一下公式五、六吗?活动:结合上一堂课研究公式一一四的共同特征引导学生寻求公式五、六的共同特征,指导学生用类比的方法即可将公式五和公式六进行概括讨论结果:一土如正弦(余弦)函数值,分别等于a的余弦(正弦)函数值,前面加上一个把a看成2锐角时原函数值的符号.进一步可以简记为:函数名改变,符号看象限.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.公式一一六都叫做诱导公式. 提出问题学了

20、六组诱导公式及上例的结果后,能否进一步归纳概括诱导公式,怎样概括?讨论结果:诱导公式一一四,函数名称不改变,这些公式左边的角分别是 2k Tt + a fkZ),兀土很可看作0- a其中2k兀,碇横坐标轴上的角,因此,上述公式可归结为横坐 标轴上的角士蟠数名称不改变.而公式五、六及上面的例1,这些公式左边的角分别是± “3- - a其中一,3是纵坐标轴上的角,因此这些公式可归结为纵坐标上的角土圜数名222 2称要改变.两类诱导公式的符号的考查是一致的,故而所有的诱导公式可用十个字来概括:纵变横不变,符号看象限.教师指点学习方法:如果我们孤立地记忆这么多诱导公式,那么我们的学习将十分苦

21、累且效率低下.学习过程中,能挖掘各个公式的本质特征,寻求它们之间的共性,那么我们对数学公式的记忆就不再是负担了.因此,要求大家多做这方面的工作,以后数学的学习就不再是枯燥无味的了 .示例应用思路13例1证明(1)sin( 2-a )=COS a ;(2)CoS- - a )=sin活动:直接应用公式五、六或者通过转化后利用公式五、六解决化简、证明问题证明:(1)sin( - a )=sin7r-(a )=sin( a )=cos a ;222(2)cos( - a )=cos 厂-> )=cos( - a )=sin a .222 3点评:由公式五及六推得 士函三角函数值与角”的三角函数

22、值之间的关系,从而进一步可22k 1以推广到 2sin(2例2化简11、a) cos(a) cos( a) cos(- a)cos( a)sin(3 a)sin( a)sin(活动:仔细观察题目中的角,哪些是可以利用公式二 认真应用诱导公式,达到化简的目的.a)一四的,哪些是可以利用公式五、六的.(sin a)( cosa)( sina)cos5 (解:原式二2(cosa) sin( a) sin(a)a) sin4(-a).2sin acosa cos( a)(cosa)sina ( sina) sin( a)sin a=-tan a .cos a思路2例 1 (1)已知 f(cosx)=c

23、os17x,求证:f(sinx)=sin17x;(2)对于怎样的整数 n,才能由f(sinx)=sinnx推出f(cosx)=cosnx?兀(k Z)的情形.本例的结果可以直接作为诱导公式直接使用活动:对诱导公式的应用需要较多的思维空间,善于观察题目特点,要灵活变形.观察本例条件与结论在结构上类似,差别在于一个含余弦,一个含正弦,注意到正弦、余弦转化可借助sinx=cos( -x)或cosx=sin( -x).要善于观察条件和Z论的结构特征,找出它们的共性与差异;要注意诱导公式可实现角的形式之间及互余函数名称之间的转移证 明:(1)f(sinx)=fcos( - -x)=cos17( - -x

24、)=cos(8 兀1-17x)=cos( - -17x)=sin17x,即 f(sinx)=sin17x.(2)f(cosx)=fsin( -x)=sinn( - -x)=sin(-nx)=sin x, ncosnx,n sin nx,ncosnx,n4k,k Z,4k 1, k Z,4k 2, k Z,4k 3,k Z,故所求的整数n=4k+1(kCZ).点评:正确合理地运用公式是解决问题的关键所在 变式训练已知 cos( - a )=m(m & 俅 sin( a 的值.2解:: 32 sin(-363a-( - a )=7 ,-1- -T- - a=+(-a ).62326-a 尸

25、sin +( "6- & 1 =cos( 6- a )=m.点评:(1)当两个角的和或差是 一的整数倍时,它们的三角函数值可通过诱导公式联系起来 2(2)化简已知与所求,然后探求联系,这是解决问题的重要思想方法.例2已知sin遑方程5x2-7x-6=0的根,且a为第三象限角,sin(a 3)?sin(3- a)?tan2(2a)?tan( a)求22的值.cos( a) ?cos( a)活动:教师引导学生先确定 sin的值再化简待求式,从而架起已知与未知的桥梁解:: 5x2-7x-6=0 的两根 x=2 或 x=,5 3. -1WxW1,sin a=.54 又.a为第二象限角

26、,cos a4-1 - sin = .5,3tan a .42(cos a) ? ( cos a) ? tan a?( tana) 3原式= -=tana=一sin a ?( sin a)4点评:综合运用相关知识解决综合问题 变式训练若函数 f(n尸sin n-(n C Z),则 f(1)+f(2)+f(3)+f(102)=.“n n(n 12)斛:,二sin ( -+2 兀 尸sin$,.f(n)=f(n+12).从而有 f(1)+f(2)+f(3)+f(12)=0, f(1)+f(2)+f(3)+f(102)=f(1)+f(2)+f(3)+f(4)+f(5)+(6) =2 f(1)+f(2

27、)+f(3)=2+ . 3 .例3已知函数f(x)=asin(兀x+a )+bcos(兀X+电)a,b, a ,都是非零实数,又知f(2 003)=-1,求f(2 004)的值.活动:寻求f(2 003)=-1与f(2 004)之间的联系,这个联系就是我们解答问题的关键和要害.解:f(2 003)=asin(2 003 兀 + a )+bcos(2 003 兀 + 3 )=asin(2 002 兀 + 兀 + a )+bcos(2 002 兀 + 兀 + 3 )=asin( 兀 + a )+bcos( 兀 + 3 )=-asin -bcos 3=-(asin a +bcos 3 ), .f(2 003)=-1,asin a +bcos 3 =1. . f(2 004)=asin(2 004 兀 + a )+bcos(2 004 兀 + 3 )=asin a +bcos 3 =1.点评:解决问题的实质就是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论