—马氏链的应用-随机过程论文_第1页
—马氏链的应用-随机过程论文_第2页
—马氏链的应用-随机过程论文_第3页
—马氏链的应用-随机过程论文_第4页
—马氏链的应用-随机过程论文_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、随机过程论文马氏链的应用学院:东凌经济管理学院 班级:金融0902班 姓名:一、文献综述马氏链在日常生活诸多领域中有着广泛的应用0我引用了五篇文 献,分别是刘家军的马氏链在无赔款优待模型中的应用;廖捷、陈功 的叠加马尔科夫链模型在高原年降水量预测中的应用;郭小溪的借助 于马尔柯夫链的无后效性性质,预测2000 2005年6年的8项支出量; 吴加荣、谢明铎、何穗的一类马氏链的数据仿真与应用;肖定文、黄 崇起的用马尔柯夫过程预测股市短期或中长期走势。刘家军在2009年介绍了马氏链在无赔款优待模型中的应用,利 用mat lab7. 0计算在未来几年中索赔事件发生的强度分布与被保险 人所处折扣等级的分

2、布以及两者的极限分布,并依此计算纯保费。降水量的预测是气象学中一项重要的研究工作。由于气象系统的 复杂性、多样性,使得降水过程具有不确定性、较难精确预测的特点。 廖捷、陈功2010年引入了叠加马尔科夫链模型,以位于川西高原的小 金站1961-2010年的全年降水量资料为例,探讨了叠加马尔科夫链模 型在高原年降水量预测中的应用。廖捷、陈功利用均值-均方差分级 法对年降水量进行分级,并由此将小金站各年的全年降水量划分为5 个状态。根据各年降水量的状态,可统计得到不同步长的概率转移矩 阵。在进行降水量的叠加预测时,主要考虑利用步长为14的概率转 移矩阵进行计算。首先利用19612000长度为40年的

3、降水量序列预测 了2001年的降水量,之后去掉1961年降水量值,加入2001年实际观 测降水量值,保持序列长度不变,预测2002年的降水量。以此类推, 利用叠加马尔科夫链模型预测了小金站200N2010共十年的降水量, 并与该站实际观测降水量进行了对比。2006年郭小溪利用长春市居民1998、1999连续两年的收、支数量 变化,借助于马尔柯夫链的无后效性性质,建立居民消费性支出结构 的概率转移矩阵,进而预测出自2000年至2005年6年的8项支出值; 进一步分析居民消费性支出变化的基本规律和受控因素,并与经济 发展条件一起探讨发展经济的人文环境影响作用。吴加荣、谢明铎、何穗利2009年利用马

4、尔可夫链的几个重要定理, 研究了一颗粒在具有n个顶点的正多面体的顶点上运动的转移概率矩 阵,得到概率转移矩阵极限中的元素均为,利用定理2求得该颗粒首 次返回起跳点所需的平均步数为n,以及该颗粒在首次返回起跳点经 过体对顶点的平均次数为1,最后针对一个正八面体,利用计算机随机 生成数据进行模拟,得到的结果与定理相吻合的。最后应用该方法研 究了生产结构优化的问题。肖定文、黄崇起1996年给出了用马尔柯夫过程预测股市短期或中 长期走势的一种方法,对线图理论、波浪理论、威尔德数量理论等 其它技术分析方法作了有益的补充。二、理论推导、公式、结论1.马氏链在无赔款优待模型中的应用在概率空间(8, F, P

5、)中,A=1, 2, n, T = 0, 1, 2, -, Xt;teT 是表示t时刻被保险人所处状态的随机变量序列,由于投保人 在下一年的保费级别只取决于他在前一年的索赔记录,所以对任意 的tE 1及任意的Cl,,CneA ,显然有尸X t = C t/X 1 = a,X t 1 = C t 1 = P X t= C t/X 1 = C t 1记 p ij= PXt= i/xt- 1= j,显然对 i=0, 1, 2,n,ylo则t时刻转移概率可以写为矩阵的形式:rpnP12 pkN t称为转移概率矩阵。Nt=P2LP22 pL这样,只要给定在t时刻保费分布U t二tpii2(U tl,U

6、t2, U tn),即各保费组别的保单比例,就可以求出t+ 1 时刻保费分布U t+ 1= U tN t= U IN 1-N t第t年内被保险人的赔案 Xt, t= 1, 2,,为一随机变量,为了模拟Xt, t= 1, 2,,一般假 设Xt , t= 1,2,相互独立且服从强度参数为常数K的泊松分布。 保险公司可以根据自己的经营状况制定:保费等级共六级100% , 90% , 80% , 70% , 60% , 50% ,即第t年初被保险人所处等级状态为U t= (U tl,U t2,U t6),被保险人所处的初始等级状态为U 1= (U 11 ,U 12,U。被保险人第t年初索赔发生强度状态

7、共3级,0. 2, 0. 3,O S O. 2 O 20. 4即第t年初索赔发生强度 R= 0.5 64 O. 1状态H t=(H o3 O4 O3,tl, H t2, H t3),被保险人所处的初始强度状态为H1=(HU, H12, H13)o事件发生强度/t+ 1为齐次可列马氏链,转移强度为R。循环 运算10 000次,确保获得t-8时,h t,U t的极限当输入U 1= (1,0, 0, 0, 0) , Hl= (0, 0, 1)时,在第二年初,被保险人的等级状态 为U 2二(0. 3297, 0. 6703, 0, 0, 0, 0),被保险人索赔发生强度 状态H2二(0. 300, 0

8、. 4000, 0. 3000)在第10000年初被保险人 的等级状态,即等级状态的极限为U 10000= ( 0. 0148, 0. 0166, 0. 0245, 0. 0567,0. 1858, 0. 7017)。第 10000 年初被保险人索赔发 生强度状态为,即强度状态的极限为H10000二(0. 5135, 0. 2973, 0.具有丰富的水利资源,也是长江上游重要的生态和水源涵养区。对小 金地区降水量的准确预测具有重要的现实意义。在木文中,利用均值-均方差分级法对年降水量进行分级。对于序列,其均值为X,均方差为s ,在应用中,通常可将序列值划分为五级:a- cr2.sx +x +

9、as,x +a ca a其中,一般可在1.0J.5中取值,"?一般可在0.3,0.6中取值。年降水量的预测:表1年降水尿状态分级农状念级别分级标准降水虽区间(a)1早x<x-Asx<5315.32«1早x-1.U<a<x-0.555315.3<x< 5733.53止常x-0.5s<x<x4-0,5s5733.5 Sx< 6430.54x-k-QSsx <x-l6430.5<6848.75涝x6S4S,7续衣2小金站19617000年降水呈序列和乞年降水星对应状态表年份降水虽.(单位am J状态19926309

10、3199370005199461233199567S34199656282199747741199860603199968444200054042在进行降水量的叠加预测时,主要考虑利用步长为14的概率转移矩阵进行计算。转移矩阵伙)P的第,行第/列元素表示由状态,经k步转移至状态/的概率。可由表2统计得到步长为14的各概率转移矩阵如下:1/61/6 2/61/6 1/61/50 1/5 1/5 2/5P严2/15 1/15 5/155/15 2/151/73/7 2/70 1/71/6 0 5/60 0''1/61/6 3/61/6 02/51/5 1/51/5 0P严2/140

11、 4714 4/14 4/141/61/6 3/60 1/6、0 2/6 2/61/6 1/6、0 1/6 1/6 3/6 1/61/5 0 4/5 0 0P2 =2/15 4/155/15 2/15 2/151/602/61/6 2/6,2/602/61/6 1/6 ,/ 003/50 2/5'1/52 /5 01/5 1/53/14 2/145/14 3/14 1/141/603/61/6 1/61/602/62/6 1/6 ,计算得状态均值向量(由各状态上下限值求均值得到,状态1的下限 和状态5的上限分别取序列值的最小值和最大值)为: 伽产4968.7 5524 4 6082 6

12、639.6 7119.9。1997-2000年分别经过41步(年)状态转移即到达2001年,为了求得2001年的年降水量预测值,可根据1997-2000年降水量所处状 态,分别取岀相应步长的状态转移矩阵的对应行向量,与均值向量伽)“作内积即可得到该步长时的2001年的降水量预测值,将不同步长 转移矩阵求得的预测值进行養加平均,便可得到2001年降水量的最 终预测值,见表3。衣32001年降水駅的预测年份状态步长侦测值(单位am丿1997146497199$33637919994263352000216386圮终预测債(单位nun)6399由表3可知,利用叠加马尔科夫链模型预测的2001年降水量

13、为6399mm,与实际观测量6795mm相比较,误差为-5.8%,可认为对2001 年年降水量的预测是较为接近真实情况的。在年降水量序列中,加入 2001年的实际观测值,同时去掉1961年降水量值,保持序列长度为 40年,重复2.2节中的各步骤,可得2002年的年降水量预测值。以 此类推,直至计算出2010年的降水量预测值。2001-2010年降水量 预测值及其与实际观测值的比较见表4。表4 2001-2010年降水屋预测值与实际观测值对比表(单位:nun)乖份预测值观测值決差200163996795-5. 8%200257735993-3. 7%200361356685-8. 2%20045

14、9418052-26. 2%200S62046280-1.2%2006630660274.6%20076110530720. 8%200862546686-6. %2009625659704.8%201059656823-12.6%分析表4中的数据可知,若将预测值与观测值的误差控制在10%以 内的预测认为是“有效预测”,则对于小金站200N2010年降水量的 预测的有效率为70%,其中预测误差在5%以内的年份占40%o预测误 差较大的3年分别为2004、2007和2010年,分析该三年的降水量可 以发现,此三年均为大旱或大涝年,尤其是误差较大的2004年,其 降水量为小金站196N2010年观

15、测记录资料中的极大年。由于叠加马 尔科夫链模型在预测中涉及的因子为序列的均值、均方差、预测起始 年份状态以及各类状态间转移的概率,若待预测年份降水量为 大旱或大涝,则模型预测将可能会有较大误差。但同时由于叠加马尔 科夫链具有很强的“自我调整能力”,故其中某年的预测误差偏大并 不会影响到后续年份的预测。研究结果表明,对于小金站2001-2010 年降水量的预测误差控制在10%以内的年份占70%,其中预测误差控 制在5%以内的年份占40%。预测误差较大的3年分别为2004、2007 和2010年,此三年均为大旱或大涝年。叠加马尔科夫链模型预测以 各种步长的马尔可夫链叠加来预测降水量状态,该方法与普

16、通的马尔 可夫链预测方法相比更能充分地利用信息。对于大旱或大涝年份降水 量的预测,该预测模型存在着预测误差偏大的缺陷,有待在后续研究 中进一步改进预测方法。叠加马尔科夫链预测模型物理概念清晰,计 算简便,为提高中短期降水量预测的精度提供了一条值得探索的途 径。【2】3. 借助于马尔柯夫链的无后效性性质,预测2000" 2005年6年的8 项支出量图1长春市19921999年居民可支配收入时间序 列散点图设时间序列预测模型Q t二bt+ a,折扣系数为( 0, 1),用折nE n- ta +£=n0na I、n -a iyt) - a 乙(/a t=na扣法最小平法估计参数,

17、可得到参数b、a估计值的正态方程迄(z=rao)+ b土 (a"-' i u吟取a= 0. 1,从 1993到 1999年分别取t=-3、-2、(k 1、2、3,解 (1)得b、a,所求直线预测模型为 y" t 二 228 116. 457 288t + 3 011 097. 567 968, ( 2)再将2000至2005年的t= 4、5、6、7、8、9代入(2)即可得到所预测的1999年之后6年长春市300户居民可支配收入的时间序列值(可支配收入),如表2。表2长春市居民2000-2005年居民可支配收入的预测值/单位:元丿2000 年2001 年2002 年2

18、003 年20M年2005年5 064 145.685 292262 15552 037& 65 748 495.065 976611. 526 2M 727.97居民消费性支出的马尔柯夫链预测:马尔柯夫链预测法最简单类型是将现有的统计资料和经济信息分成 不同状态,建立合理的概率转移矩阵,再进行下期最可能状态的预 测。在构造消费性支出的概率转移矩阵时,遵从以下原则 a用各项支出占可支配收入的比率作为概率的近似; b所有比率减少的项均向比率增加的项分配转移;c所有比率增加的项均不向任何方向转移,而以概率1向自身分配转 移;d比率分配计算:弋表项支出向丿项支出转移的概率,p :项比率减少量

19、一/项比率增加量 心.p i项终比率.2 顷始比率 比率总増加量,匕二,项始比率'心小 由以上原则以及表1数据,可得到居民消费性支出结构的概率转移矩 阵0 921840a 016860. 02217Q 032210. 0069200 914910Q018340. 02413Ol 035050. 0075 30001000P =0000100f00000100000011< 000a 031210. 04106Q 059640. 0128 J以1999年的比率为始比率,由概率转移矩阵p(式(3)可以预测出2000" 2005年居民的消费性支出结构的比率分配;用SI、S2、

20、S7分别代表1999 2005年的消费性支出结构的比率分配向量,用S0代表1998年比率分配向量,则有表3长吝市抽样(300户)居民6年8项支出预测支出预测 W元)_ 食品衣若家庭耐用品更疗保他交通通讯娱乐教育文化用品居住其它20001.89960 4831a 2310 3545(1 40610.68670. 49430 675620011.83010 4620a (H76Q 4393ft 51550. 84»l0.54460 605820021. 7599a 4411a 03530 5217tt 62161.00800.5W50 538820031. 6889a 4202ft (C

21、64ft 6024ft 72491. 16230. 6433ft 4«X)20(M1.6191a 3998ft 0191ft 6813ft 82601.31370. 6909ft 426720051. 5493a 3797a 01470 7582ft 92451.46120.73840 3791S0 =<0 4414ft 1140Q 02520.0384a 0387s'=5°*P = (Q4069a 1()43a oi 790. 0552(1 0608S2=51*P = (0 3751Ol 0954a 01270. 0700(1 08()2S3=S-*P =

22、3458ft 0873a 009()0. 0830(1 0974S4=S3*P = (13188Q 0799(1 (X)640. 0945(1 1 126S5=54*P = (1 29X3ft 0731Q 00460. 1048(I 1261S6=S5*P = (0 2709Q 0669ft 00320. 11400 138257=P = (Q2497a 0612Q 0()230. 1222a 1490a 0753Q 1074(1 1356Q 1605(1 1826(1 2022Q 2198a 2350a 0846(X 0915a 0976a 1029a 1077a ii 19a 1156(X

23、 11900. 18420. 156(:0. 13340. 11410. 09 7C0. 08350. 07140.0611由表3和图2可见,按支出增减分类可分为两大类,第一类支出逐年 减少项目和第二类支出逐年增多项目;第一类包括食品、衣着、家庭耐用品和其他项目,第二类包括-医疗保健、交通和通讯、娱 乐教育文化用品和居住项目。在第一类项目中,家庭耐用品支出下降 幅度大,5年内达到约0.6单位元(1单位元设为106元 下同),食品 和衣着支出几乎都均匀下降,而食品支出下降变化率比衣着大。在第 二类项目中,交通和通讯项目增加幅度最大,5年内达到约0.5单位元, 其次是娱乐教育文化用品、医疗保健和居

24、住项目;从增加变化率看, 几乎4项支岀都是均匀增加,其中娱乐教育文化用品项目支出增加变 化率最大,约为0.16单位元/年,居住项目最小,约为0.05单位元/年; 娱乐教育文化用品、交通和通讯项目支出绝对量排第一与第二,分别 约1.46和0.9单位元。34. 一类马氏链的数据仿真与应用 定义1设X = xn (w), n = 0, 1, 2是定义在概率空间F, P )上的随机变量序列,其取值空间为I二N U 0,记p ij ( n )=P ( xn+ 1 = j /xn = i),若对任意的n0及I中的元il, i2, i3, .in 一 1, i与j,均有:P ( xn+ 1 = j /xn

25、= i, xk = ik, k= 1, 2, .n -1) = P ( xn + 1 = j /xn = i) = p ij ( n )则称是一个离散时 间的马尔可夫链,简称马氏链。又称P二(pij )为马氏链的一步转 移矩阵;称P(n) =(p(n)ij )为马氏链的n步转移概率,而称P ( n) =(p( n)ij )为马氏链的n步转移矩阵。定理I V/n >2 P m,,严均如定义I则Pn, =.定义2对任意卡/定义几=罗貯:爲二:豊为自倒达张首达时间,而定义用* 8如果上面的集合是窃集OOOO(T, = uZvo = ij 为自 加发经步"首.达 j的转移概率.记 f,

26、 = £/;'、=力(T9 = uZvo = i) = p( 7: < 8 / .vo= 0),称它为自i出发.经有限步终于到达J的概率.当厶=I时.1朋是一个概率分布。 此时称呦=£“絆为自i出发.最终到达j的平均时间.并简记及后几 定理2若匕氏链是不可约(即所冇状态均互通 用非周期,常返的则疋人冇山/二丄且* 已(ijI (ff|= liiipfiA 8"8实例:一个颗粒在正八而体的顶点上随机走动,在每一步,它以概 率1/5留在原点,分别以1/5的概率移动到其它四个相邻的顶点。设0和5分别表示正八面体对角线上的两点。假设颗粒从0开始走动,求: 1

27、)该颗粒第一次回到0的平均步数。2)该颗粒第一次回到0之前平均经过5的次数。解:八面体的各顶点标记如图1:该颗粒的走动过程显然是一个马氏链,易得,其一步转移概率矩阵1/51/51/51/51/51/51/51/51/51/501/51/51/51/501/50p=1/501/51/51/51/51/51/501/51/51/501/51/51/51/51/5>r 1/61/61/61/61/61/61/61/61/61/61/61/6( n.1/61/61/61/61/61/6二 p 二1/61/61/61/61/61/61/61/61/61/61/61/61/61/61/61/61/6

28、1/勺1) 显然该马氏链是不可约且非周期,常返的,由定理2可得limnpOO ( n) = 1 /uO = 1 /6, BP: ul = 62) 设p i ( tk < tj )表示从i出发到达k所需的步数小于从i出发 到达j所需的步数的概率,PO ( t5 < tO ) = ( 1 /5)0+ ( 1 /5)p 1 ( t5< tO ) + ( 1 /5) p2 ( t5 < tO ) +( 1 /5)p 3 ( t5 tO ) + (1 /5) p4 ( t5 < tO ) = ( 4 /5) pl ( t5 < tO )由对称性得:p 1 ( t5 &

29、lt; tO ) = 1 /2, pO ( t5 < tO ) = 2 /5, pO (t5 &t0 ) = 3 /5.设回访0之前经过5的次数是n,贝ij p(k)=3/5 k= 0(2/5丿2 (3/5广'5. 用马尔柯夫过程预测股市短期或中长期走势根据深、沪两地股市的股价指数统计分析,可以把股指划分为数个区 间.例如,对深市而言可以把综合指数划分为:1区:100点以下;2区:100点至120点间;3区:120点至140 点间;即每隔20点划分1个区间1据深市资料,最高区间可划分 为360380点间.根据沪市历史资料以及本文实证分析的需要,暂 把沪市综合指数划分为3个区间,即低价区,投机波动区,高价区.3个区间的股指范围大致可以确定为:E 1低价区- 500点以下;£ 1投机波动区- 500点850点;E 1高价区- 850点以上.当然,区间的划分还可以根据不同时期的阻力位和支撐位来划分,也可以根据投资者的预测精度来划分.区间确定之后,根据深沪两地 历史资料,统计得出概率转移矩阵

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论