版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章随机事件与概率1. 将一枚均匀的硬币抛两次,事件分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件中的样本点。解: ,2.设,试就以下三种情况分别求:(1),(2),(3)解: (1)(2)(3)3.某人忘记了电话号码的最后一个数字,因而随机的拨号,求他拨号不超过三次而接通所需的电话的概率是多少?如果已知最后一个数字是奇数,那么此概率是多少?解: 记H表拨号不超过三次而能接通。Ai表第i次拨号能接通。注意:第一次拨号不通,第二拨号就不再拨这个号码。 如果已知最后一个数字是奇数(记为事件B)问题变为在B已发生的条件下,求H再发生的概率。 4进行一系
2、列独立试验,每次试验成功的概率均为,试求以下事件的概率:(1)直到第次才成功;(2)在次中取得次成功;解: (1) (2)5. 设事件A,B的概率都大于零,说明以下四种叙述分别属于那一种:(a)必然对,(b)必然错,(c)可能对也可能错,并说明理由。(1)若A,B互不相容,则它们相互独立。(2)若A与B相互独立,则它们互不相容。(3),则A与B互不相容。(4),则A与B相互独立。解: (1)b, 互斥事件,一定不是独立事件 (2)c, 独立事件不一定是互斥事件, (3)b, 若A与B互不相容,则,而 (4)a, 若A与B相互独立,则,这时6. 有甲、乙两个盒子,甲盒中放有3个白球,2个红球;乙
3、盒中放有4个白球,4个红球,现从甲盒中随机地取一个球放到乙盒中,再从乙盒中取出一球,试求:(1)从乙盒中取出的球是白球的概率;(2)若已知从乙盒中取出的球是白球,则从甲盒中取出的球是白球的概率。解: (1)记A1,A2分别表“从甲袋中取得白球,红球放入乙袋”再记B表“再从乙袋中取得白球”。B=A1B+A2B且A1,A2互斥P (B)=P (A1)P(B| A1)+ P (A2)P (B| A2) =(2)7.思考题:讨论对立、互斥(互不相容)和独立性之间的关系。解:独立事件不是对立事件,也不一定是互斥事件;对立事件是互斥事件,不能是独立事件;互斥事件一般不是对立事件,一定不是独立事件.第二章随
4、机变量及其概率分布1.设X的概率分布列为:Xi 0123Pi 0.10.10.10.7F(x)为其分布的函数,则F(2)=?解: 2设随机变量X的概率密度为f (x)=则常数c等于?解:由于,故3.一办公室内有5台计算机,调查表明在任一时刻每台计算机被使用的概率为0.6,计算机是否被使用相互独立,问在同一时刻(1) 恰有2台计算机被使用的概率是多少?(2) 至少有3台计算机被使用的概率是多少?(3) 至多有3台计算机被使用的概率是多少?(4) 至少有1台计算机被使用的概率是多少?解: (1)(2)(3) =0.0768+0.2304+0.1728=0.48(4) 4.设随机
5、变量K在区间 (0, 5) 上服从均匀分布, 求方程 4+ 4Kx + K + 2 = 0 有实根的概率。解: 由可得:所以5.假设打一次电话所用时间(单位:分)X服从的指数分布,如某人正好在你前面走进电话亭,试求你等待:(1)超过10分钟的概率;(2)10分钟 到20分钟的概率。解:6. 随机变量XN (3, 4), (1) 求 P(2<X5) , P(- 4<X10), P(|X|>2),P(X>3);(2)确定c,使得 P(X>c) = P(X<c)。解:=0.5328=所以 故 7设随机变量X与Y相互独立,且X,Y的分布律分别为X01Y12PP试求:
6、(1)二维随机变量(X,Y)的分布律;(2)随机变量Z=XY的分布律.解: X Y1200.10.1510.30.45Z012P0.250.30.458. 思考题:举出几个随机变量的例子。第三章 多维随机变量及其概率分布1.设盒子中有2个红球,2个白球,1个黑球,从中随机地取3个,用X表示取到的红球个数,用Y表示取到的白球个数,写出 (X, Y) 的联合分布律及边缘分布律。解:X Y0120000.1100.40.220.10.20YX01200.10.2a10.1b0.22.设二维随机变量的联合分布律为:试根椐下列条件分别求a和b的值; (1); (2); (3)设是的分布函数,。解: (1
7、),(2),3.的联合密度函数为:求(1)常数k;(2)P(X<1/2,Y<1/2);(3) P(X+Y<1);(4) P(X<1/2)。解: (1),故(2)(3)(4)4的联合密度函数为:求(1)常数k;(2)P(X+Y<1);(3) P(X<1/2)。解: (1),故(2) (3) 5.设(X, Y) 的联合密度函数如下,分别求与的边缘密度函数。解: 6. 设(X, Y) 的联合密度函数如下,分别求与的边缘密度函数。解: ,7. (X, Y) 的联合分布律如下, YX12311/61/91/182ab1/9试根椐下列条件分别求a和b的值;(1) ; (
8、2) ; (3)已知与相互独立。解: (1),(2)1/6+1/6+1/9+b+1/18+1/9=1,b=7/188.(X,Y) 的联合密度函数如下,求常数c,并讨论与是否相互独立?解: ,c=6,故与相互独立.9.思考题:联合分布能决定边缘分布吗?反之呢?解:联合分布可以得到边缘分布,反之不真.第四章 随机变量的数字特征1盒中有5个球,其中2个红球,随机地取3个,用X表示取到的红球的个数,则EX是:B (A)1; (B)1.2; (C)1.5; (D)2.2.设有密度函数:, 求,并求大于数学期望的概率。(该题数有错)解: 3.设二维随机变量的联合分布律为 YX01200.10.2a10.1
9、b0.2已知, 则a和b的值是:D (A)a=0.1, b=0.3; (B)a=0.3, b=0.1; (C)a=0.2, b=0.2; (D)a=0.15, b=0.25。4设随机变量 (X, Y) 的联合密度函数如下:求。解:X0123P0.10.20.30.45设X有分布律:则是:D(A)1;(B)2; (C)3; (D)4.6.丢一颗均匀的骰子,用X表示点数,求.解:X的分布为 7.有密度函数:,求 D(X).解:,8.设,相互独立,则的值分别是:(A) -1.6和4.88; (B)-1和4; (C)1.6和4.88; (D)1.6和-4.88.解: A9. 设,与有相同的期望和方差,
10、求的值。(A) 0和8; (B) 1和7; (C) 2和6; (D) 3和5.解: B10下列结论不正确的是( )(A)与相互独立,则与不相关;(B)与相关,则与不相互独立;(C),则与相互独立;(D),则与不相关;解: B11若 ,则不正确的是( )(A);(B);(C);(D);解:D12()有联合分布律如下,试分析与的相关性和独立性。YX-101-11/81/81/801/801/811/81/81/8解: 由于 而所以与不独立. 由于,所以,与不相关13是与不相关的( B ) (A)必要条件;(B)充分条件:(C)充要条件;(D)既不必要,也不充分。14. 是与相互独立的(A )(A)
11、 必要条件;(B)充分条件:(C)充要条件;(D)既不必要,也不充分。15.思考题:(1) 设随机变量 (X, Y) 有联合密度函数如下:试验证与不相关,但不独立。解: 0,不相关显然:,所以与不独立.(2)设有,试验证,但与不相互独立解: 显然:,所以与不独立.讨论与独立性,相关性与独立性之间的关系解:若X与Y相互独立,则,反之不成立.独立一定不相关,反之不真.第五章大数定律及中心极限定理1.一批元件的寿命(以小时计)服从参数为0.004的指数分布,现有元件30只,一只在用,其余29只备用,当使用的一只损坏时,立即换上备用件,利用中心极限定理求30只元件至少能使用一年(8760小时)的近似概
12、率。解: 设第只元件的寿命为(),则是这30只元件寿命的总合,则所求的概率为: 2.某一随机试验,“成功”的概率为0.04,独立重复100次,由中心极限定理求最多“成功”6次的概率的近似值。解: 设成功的次数为,则,第六章样本与统计量1.有n=10的样本;1.2, 1.4, 1.9, 2.0, 1.5, 1.5, 1.6, 1.4, 1.8, 1.4,则样本均值=1.57 ,样本均方差 0.2541,样本方差0.06456。2设总体方差为有样本,样本均值为,则 。3. 查有关的附表,下列分位点的值:=?,=9.236 ,=-1.3722 。4设是总体的样本,求。解: 5设总体,样本,样本均值,
13、样本方差,则 , , 第七章 参数估计1.设总体的密度函数为:,有样本,求未知参数 的矩估计。解:,故 的矩估计:2.每分钟通过某桥量的汽车辆数,为估计的值,在实地随机地调查了20次,每次1分钟,结果如下: 次数: 2 3 4 5 6 量数: 9 5 3 7 4 试求的一阶矩估计和二阶矩估计。 解:,所以,3.设总体的密度函数为:,有样本,求未知参数 的极大似然估计。解:由题设,似然函数为:,解得的极大似然估计为4.纤度是衡量纤维粗细程度的一个量,某厂化纤纤度,抽取9根纤维,测量其纤度为:1.36,1.49,1.43,1.41,1.27,1.40,1.32,1.42,1.47,试求的置信度为的置信区间,(1)若,(2)若未知解: (1),的置信区间为(2) ,时,置信区间为:5. 为分析某自动设备加工的另件的精度,抽查16个另件,测量其长度,得,s = 0.0494,设另件长度,取置信度为,(1)求的置信区间,(2)求的置信区间。解:,所以置信区间为: .的置信区间为:0.0361,0.0762第八章假设检验1.某种电子元件的阻值(欧姆),随机抽取25个元件,测得平均电阻值,试在下检验电阻值的期望是否符合要求?解:检验假设:,由已知可得: 查表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际医疗科技交流合作研发项目协议书
- 2025年度“唐风宋韵”离婚协议专业调解与执行合同3篇
- 二零二五年度地下综合管廊建设劳务分包合同2篇
- 医疗器械生产质量保证与免责合同
- 2025版跨境电子商务代理合同范本下载2篇
- 2024琴行合伙人合同-音乐培训及演出代理协议3篇
- 二零二五年度厂区装卸工劳动合同执行细则2篇
- 服装制造行业技术支持合同
- 2024年物联网应用解决方案定制合同
- 公司部门绩效考核方案
- 2022年总经理年会发言稿致辞二
- 警综平台运行管理制度
- 立法学完整版教学课件全套ppt教程
- 简约中国风水墨山水工作总结通用PPT模板
- 矿山测量课程设计
- 药厂生产车间现场管理-PPT课件
- 轴与孔标准公差表
- 防火门施工方案
- 人教PEP版2022-2023六年级英语上册期末试卷及答案(含听力材料)
- 高速公路沥青路面设计计算书(Word)
- 加油机拆卸安装方案
评论
0/150
提交评论