




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用标准文案概率论与数理统计学习报告学院学号:姓名:精彩文档实用标准文案概率论与数理统计学习报告通过短短一学期的学习,虽然学习、研究地并不深入,但该课程 的每一处内容都有不同的奇妙吸引着我,让我对它在生活中饰演的角 色充满遐想;它将我带入了一个由随机变量为桥梁, 通过表面偶然性 找出其内在规律性,从而与其它的数学分支建立联系的世界, 让我对 这种进行大量的随机重复实验,通过分析研究得出统计规律性的过程 产生了极大地兴趣。我很喜欢这门课程,但也不得不说课后在它上面 花的时间并不多,因此学得还不深入,但它真的深深地吸引了我,我精彩文档实用标准文案一定会找时间进一步深入地学习它。先简单地介绍一下概率
2、论与数理统计这门学科。概率论是基于给出随机现象的数学模型, 并用数学语言来描述它 们,然后研究其基本规律,透过表面的偶然性,找出其内在的规律性, 建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数 学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学 科提供了解决问题的新思路和新方法。数理统计是以概率论为基础, 基于有效的观测、收集、整理、分析带有随机性的数据来研究随机现 象,进而对所观察的问题作出推断和预测, 直至为采取一定的决策和 行动提供依据和建议。概率论与数理统计是研究随机现象及其规律性的一门数学学科。 研究随机现象的规律性有其独特的思想方法, 它不是寻求出现每一现
3、象的一切物理因素,不能用研究确定性现象的方法研究随机现象, 而 是承认在所研究的问题中存在一些人们不能认识或者根本不知道的 随机因素作用下,发生随机现象。这样,人们既可以通过试验来观察 随机现象,揭示其规律性,作出决策,也可根据实际问题的具体情况 找出随机现象的规律,作出决策。至今,概率论与数理统计的理论与方法已经广泛应用于自然科 学、社会科学以及人文科学等各个领域中,并随着计算机的普及,概 率论与数理统计已成为处理信息、 制定决策的重要理论和方法。它们 不仅是许多新兴学科,如信息论、控制论、排队论、可靠性论以及人 工智能的数学理论基础,而且与其他领域的新兴学科的相互交叉而产精彩文档实用标准文
4、案生了许多新的分支和边缘学科,如生物统计、统计物理、数理金融、 神经网络统计分析、统计计算等。概率论应用随机变量与随机变量的概率分布、数字特征及特征函 数为数学工具对随机现象进行描述、分析与研究,其前提条件是假设 随机变量的概率分布是已知的;而数理统计中作为研究对象的随机变 量的概率分布是完全未知的,或者分布类型已知,但其中的某些参数 或某些数字特征是未知的。概率论研究问题的方法是从假设、命题、 已知的随机现象的事实出发,按一定的逻辑推理得到结论,在方法上 是演绎式的。而统计学的方法是归纳式的,从所研究地对象的全体中 随机抽取一部分进行试验或观测,以获得试验数据,依据试验数据所 获取的信息,对
5、整体进行推断,是归纳而得到结论的。因此掌握它特 有的学习方法是很重要的。在学习的过程中,不论是老师提出的一些希望我们课后讨论的问 题还是自己在做作业看书过程中遇到的一些问题都引发了我的一些 思考,或许解答得并不全面甚至还可能是不正确的, 但确实是自己的 一点思考,提出来以后逐步地去解决完善吧。一随机事件及其概率问题:(1)事件 A= P(A) 0,那么P(A) 0 A 对吗?解析:此种说法不对。概率论里说了不可能事件的发生概率是 0,但0概率事件可能发生.比如在宇宙中抽一个人,抽到你的概率。这 就是一个0概率事件可能发生的例子!精彩文档实用标准文案随机变量分连续和离散两种,它们各自的分布描述是
6、不同的。对 于离散随机变量,如果它的事件域是有限个事件,则可以认为概率为 0的事件一定不会发生,概率为1的事件必然发生。但若事件是无限 的,则还要具体分析。既然0概率事件都是有可能发生的,那么概率 趋近于零的事件果然有可能发生,只不过我们平时在处理问题的时 候,把概率趋近于零的事件算作0概率事件,只是算作,不是绝对的 是。对于连续性随机变量,单个具体点的概率密度值为一有界常数, 这个值可以是任意的(包括0和1),但因为点是没有长度的,所以 该点的概率密度积分为0 (因为该点概率密度值有界),即该点所对 应的事件发生的概率为0,但这个事件仍然是可能发生的,因为这个 事件在事件域内。也就是说,概率
7、为0的事件并不一定不会发生。同 理,某个点的概率密度值为1,但该点的概率密度积分仍为 0,所以 概率为1的事件也不一定必然发生。总之,对于连续性随机变量,讨 论单个点的概率是没有意义的(都为 0),我们讨论的是,这个随机 变量落在一个区间内的概率。(2)事件A、B、C,它们两两独立,是否 A、B、C 一定是相互独 立?解析:不一定。举一个反例:某一个袋中有 4个球,一个白色, 一个黑色,一个红色,一个为这三色,现任取一个球观察颜色。可知: 设事件A,B,C,A=(有红色),B=(有白色),C=(有黑色)。11P(A) P(B) P(C) 2,111AP(AB) P(AC) P(BC) - -
8、- P(A)P(B) P(A)P(C) P(B)P(C) A、精彩文档实用标准文案1111B、C 两两独立,又 P(ABC) 4 - - 2 P(A)P(B)P(C) A、B、C 不 是相互独立。所以几个事件两两独立不一定它们就是相互独立。(对于此反例,有一个问题就是,八八 1八-11P (AB) P(AC) P(BC) P(A)P(B) P(A)P(C) P(B)P(C)-,虽然在数值上相等,但会是一个数值上的巧合吗?P(AB) P(A)P(B)一定成立吗?)(3)独立与互不相容的关系:(独立条件:P(AB) P(A)P(B),互不相容条件:P(AB) 0)解析:若 0 P(A) 1,0 P
9、(B) 1 ,则 a : A、 B 独立,P(AB) P(A)P(B) 0 A、B 相容。b: A、B 不独立,P(AB) 0 A、B 互不相容;P(AB) P(A)P(B) 0 A、B 相容(4) A与B互相独立,C B, A、C是否一定互相独立?解析:A、C不一定独立。举一反例:如图:P(AB) P(A) P(B) 0, C B 力图即并Ly (AC)._0 P(A)P(C)所以A、C不独立。0<二 > 随机变量及其分布问题: 概率论中引入随机变量,从而使研究对象由随机事件扩大为随机 变量,对于随机变量的分布函数,我们能够用微积分为工具进行研究, 强有力的数学分析工具大大地增强
10、了我们研究随机现象的手段一一精彩文档实用标准文案三 随机变量数字特征与极限定理:我们都知道随机变量的概率分布能够完整地描述随机变量的统计 规律,但在许多的实际问题中,求概率分布并不容易,另一方面,有 时不需要知道随机变量的概率分布,而只需要知道他的某些数字特征 就够了。数字特征虽然不像概率分布那样完整地描述了随机变量的统 计规律,但它能集中地反映随机变量的某些统计特性,而且许多重要分布中的参数都与数字特征有关,因而数字特征在概率论与数理统计 中占有重要地位。我们也学习了几种常见的分布的数字特征,包括期望、方差、协方差、相关系数以及矩等。(1)不相关与独立之间的关系:解析:不相关的等价命题:1。
11、 0 2。cov(x,y)=0 3。 E(XY)=E(X)E(Y)4。 D(X+Y)=D(X)+D(Y)独立 E(XY) E(X)E(Y)(有数字特征) 不相关结论:(1) X与Y独立,则X与Y一定不相关(2) X与Y不相关,则X与Y不一定独立精彩文档实用标准文案证明:(1)由于X与Y独立,所以f(xy)=f(x)f(y), (f为概率密度函数)于是:E(XY)= f f(xy)dxdy= ff(x)*f(y)dxdy=Jf(x)dx* /f(y)dy=E(X)E(Y)所以:E(XY)=E(X)E(Y),即 X, Y 不相关。(2)反例:X=cost,Y=sint ,其中t是(0,2兀上的均匀
12、分布随机变量。易得X和Y不相关,因为:E(XY)=E(cost sint)= (1/2 兀)* Tsint cost dt = 0E(X)= (1/2 兀)* /cost dt = 0 , E(Y)= (1/2 兀)* /int dt = 0 所以E(XY)=E(X)E(Y)。但是他们是不独立的。因为:X和Y各自的概率密度函数在(-1,1 )上有值,但是XY 的联合概率密度只在单位圆内有值,所以 f(XY)不等于f(x)*f(y),两者 不独立。(2)切比雪夫不等式:P X E(X) 盟立切比雪夫不等式给出了在随机变量 X的分布未知的情况下,利用E(X)和D(X)对X的概率分布进行估计的方法,
13、有很广泛的应用。 注意一些应用中的独立条件:1。概率密度f(x,y) fX(x) fY (y);2。卷积公式.fZ(z)fX (x)fy(z x)dx ; 3。N个独立正态分布之和nnn仍然是正态分布 Xi N( i, i2); 4。E(XY) E(X)E(Y), i 1i 1 i 1D(X Y) D(X) D(Y)<四 > 数理统计与参数估计:数理统计以概率论为理论基础,根据试验或观测到的数据,研究精彩文档实用标准文案如何利用有效的方法对这些已知的数据进行整理、分析和推断,从而 对研究对象的性质和统计规律作出合理科学的估计和判断。 然而在实际问题中,所研究的总体分布类型往往是已知
14、的, 但依赖于一个或几 个的未知参数,如何从样本估计总体的未知参数就成为数理统计的基 本问题之一。通过学习,简单地了解了一些关于点估计和区间估计的 问题,能够解决一些简单的实际问题(1)如何推导出的样本方差:S2 n (Xi X)2 ( Xi2 nX2)n 1 i in 1推导过程:XN (22), X -N(,一)。(注意独立条件)nXj-Xij i,j i n 1xi Xxi- = xin n 1 nnXj1,j i1-N (-n 1nn3 4n2 3n 1n2(n 1)2)由 S2T = £ Xi是D(X)的无偏估计从,中随机抽取 n个样本,-I 是样本均s2 = 一灯值,=1
15、是样本方差。那么为什么样本方差是除 以M - 1而不是n呢?对于一个随机变量 工厂/分别表示其数学期望和方差,从中随机抽取n个样本"是样本均 值,记MX】国'/为X,的方差和期望。精彩文档实用标准文案D(X)二£3 K)二力。0,)=%(WK)(J*JLe(x2 = rm + e2(x)=9 +/即2)=顼占£乙(凡一灭户)=苟-为2)=出石一 2田*+马)E(XLX中=nE(Xf)=山。乂)+ ££)="(02+3)E(£LX区)=E(M£%x=nE(X2)二 n(D(X) + E2(X)=冗(彳+ /)
16、顼中)="+图-言+/)0=b概率论与数理统计与生活实际问题有着很密切的联系。 它能将生 活中的一些问题建立成一种数学模型,并且教给我们一些收集、分析、精彩文档实用标准文案处理试验数据能力,使我们能够利用学过的成熟的数学工具和方法来 研究随机现象解决生活实际问题。以下就是几类我认为比较经典的模 型和处理方法:(1) “抓阉”是否是真正的公平?解析:建立一个概率论模型:袋中有 a个黑球,b个白球。随 机地(不放回)把球一个个地摸出来。求人="第k次摸出的是黑球” 的概率(k a b).解题:把a个黑球与b个白球看作是不同的,且把a b个球的 每一种排列看作是基本事件。于是基本
17、事件总数(a b)!。由于第k次摸得黑球有a种可能,而另外a b 1次摸得球的排列有(a b 1)! 种可能。所以 A中包含的基本事件数为 a (a b 1) !。因此有: p(a)a (a b 1)3。由结果得出它与k值无关,无论哪一次取(a b) a b得黑球的概率都是一样的,或者说是取得黑球概率与先后次序无关。 这就从理论上说明了平常人们采取的“抓阉”的办法是公平合理的。(2)把一个比较复杂的随机变量 X拆成n个比较简单的随机变量 为 的和,然后通过这些比较简单的随机变量的数学期望, 根据数学期望 的性质求得X的数学期望。这是概率论中常采用的处理方法。建立一 个数学模型:r个人在楼的底层
18、进入电梯,楼上有 n层,每个乘客在任一层 下电梯的概率是相同的。如到某一层无乘客下电梯,电梯就不停下。 求直到乘客都下完时电梯停车的次数 X的数学期望。精彩文档实用标准文案解题:设Xi表示在第i层电梯停车的次数,则0 0,第i层没有人下电梯,XiI 1,第i层有人下电梯。nXXi,且 E(X)i 1nE(Xi)i 1由于每个人在任一层下电梯的概率均为-,n(1 I),。1故r个人同时不在第i层下电梯的概率为(1 3r,即:P(Xi 0) n1 ,从而,P(Xi1)1 (1 -)r于是:n1 r1 r1 rE(Xi)0 (1-)r 11 (1-)r 1 (1 -)r(i1,2,., n),nnn(13r nn得 E(X) E(Xi)i 1(3)贝叶斯公式的应用:P(A B) nP(A)P(BA)式中P( A)称为先验P(AJP(BAj) j 1概率,一般在试验前就已知,常常是以往的经验总结;P(AB)称为后验概率,它反映了试验之后对各种原因发生的可能性大小的新知识。 贝叶斯公式实际就是根据先验概率求后验概率的公式。例题模型:设患病的人经过检查,被查出的概率为 0.95,而为 患病的人经检查,被误认为有肺病的概率为 0.002。又设在全城居民 中患病的概率为0.1%。若从
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供配电基础知识培训课件
- 福建省厦门市外国语学校2025年高三第二次模拟考试化学试卷含解析
- 浙江省杭州地区重点中学2025年高三一诊考试化学试卷含解析
- 快速提升CPMM试题及答案
- CPMM历年真题分析及试题及答案
- 精心设计:CPMM试题与答案全景
- 细胞分化的基础知识试题及答案
- 2025届云南省保山市一中高考化学全真模拟密押卷含解析
- 材料供应与物流配合试题及答案
- 2025届江西省赣州市厚德外国语学校高三最后一卷化学试卷含解析
- 人教部编版五年级下册语文第三单元综合性学习知识点汇总【预习复习必备】
- (5年高职)商务谈判教学课件全套电子教案汇总整本书课件最全教学教程完整版教案(最新)
- 高中数学 分类变量与列联表 课件
- 骨科手术学课件:髋及大腿的手术入路及部分手术介绍
- 智慧园区平台用户操作手册
- 历史专题--唐宋变革论PPT课件
- 中国饮食礼仪(课堂PPT)
- 张素芳--孙重三小儿推拿流派特色与临床应用完整版
- 卡通小学生文明礼仪主题班会内容宣讲PPT课件
- 万科物业服务公司有偿维修收费准则
- 贝类增养殖学重点(共5页)
评论
0/150
提交评论