《机械优化设计》习题及答案1#(精选.)_第1页
《机械优化设计》习题及答案1#(精选.)_第2页
《机械优化设计》习题及答案1#(精选.)_第3页
《机械优化设计》习题及答案1#(精选.)_第4页
《机械优化设计》习题及答案1#(精选.)_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、word.机械优化设计习题及参考答案1- 1. 简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。 在明确设计 变量、约束条件、目标函数之后, 优化设计问题就可以表示成一般数学 形式。求设计变量向量 x x1 x2 xn T使 f(x) min 且满足约束条件hk(x) 0 (k 1,2, l)gj(x) 0 ( j 1,2, m)2- 1. 何谓函数的梯度?梯度对优化设计有何意义?答:二元函数 f( x1,x 2) 在 x0点处的方向导数的表达式可以改写成下面的形式: fd xox1cos 2 x2 xof f cos 1x1 x2 xo cos 2c

2、os xo令 f(x0)x2ffT x1 x2 xo则称它为函数 f ( x1,x2)在 x 0点处的梯度1) 梯度方向是函数值变化最快方向, 梯度模是函数变化率的最大值。2) 梯度与切线方向 d 垂直,从而推得梯度方向为等值面的法线方向 梯度 f (x0)方向为函数变化率最大方向, 也就是最速上升方向。 负梯度- f (x0) 方向为函数变化率最小方向,即最速下降方向2-2. 求二元函数 f(x1,x2)=2x12+x22-2x1+x2在x0 0,0T 处函数变化率最大的方向和数值。解: 由于函数变化率最大的方向就是梯度的方向,这里用单位向量 p 表示,函数变化率最大和数值时梯度的模 f (

3、x0) 。求 f (x1,x2)在word.x0 点处的梯度方向和数值,计算如下:f x0x14x1 2 2f2x2 1 x0 1x22 f(x0) 1 f(x0) 522-3. 试求目标函数 f x1,x2 3x12 4x1x2 x22 在点 X =1,0 处的最速下降 方向,并求沿着该方向移动一个单位长度后新点的目标函数值。 解:求目标函数的偏导数6x1 4x2,4x1 2x2x1x2则函数在 X0=1,0 T 处的最速下降方向是P f(X 0)x16x14x14x22x2x2 xx12 10x1 1 x2 0这个方向上的单位向量是:PeP 6,4T( 6)242 3,2T13新点是3X1

4、X0132新点的目标函数值f (X1)94132 132- 4. 何谓凸集、凸函数、凸规划?(要求配图) 答:一个点集(或区域),如果连接其中任意两点 x1、x2 的线段都全部 包含在该集合内,就称该点集为凸集,否则为非凸集。函数 f(x )为凸集定义域内的函数, 若对任何的 01及凸集域内的任意两点 x1、 x2,存在如下不等式:x1 1x2f x11x2对于约束优化问题word.若 f(x)、 g(j x) j=1,2,.,m都是凸函数,则称此问题为凸规划3- 1. 简述一维搜索区间消去法原理。 (要配图)答:搜索区间( a,b)确定之后,采用区间逐步缩短搜索区间,从而找 到极小点的数值近

5、似解。假设搜索区间( a,b)内任取两点 a1,b1 , a1 b1,并计算函数值 f (a1),f ( b1)。将有下列三种可能情形;1)f (a1)f (b1)由于函数为单谷,所以极小点必在区间( a,b1)内2)f ( a1)f (b1),同理,极小点应在区间( a1,b)内 3)f ( a1)=f (b1),这是极小点应在( a1, b1)内3- 2. 简述黄金分割法搜索过程及程序框图。1 b (b a) 2 a (b a) 其中, 为待定常数。3-3. 对函数 f ( ) 2 2 ,当给定搜索区间 5 5 时,写出用黄金 分割法求极小点 的前三次搜索过程。 (要列表) 黄金分割法的搜

6、索过程序号aa1a2bY1比较Y20-5-1.181.185-0.9676<3.75241-5-2.639-1.181?1.686>-0.9672?-1.18-0.2791.18-0.9676<-0.483-2.639-1.737-1.181?-0.457>-0.482word.3-4. 使用二次插值法求 f(x)=sin(x)在区间 2,6的极小点,写出计算步骤 和迭代公式,给定初始点 x1=2,x2=4, x3=6, =1-04。x2c2 c1x3解:1234x1244.554574.55457x244.554574.736564.72125x36664.73656

7、y10.909297-0.756802-0.987572-0.987572y2-0.756802-0.987572-0.999708-0.999961y3-0.279415-0.279415-0.279415-0.999708xp4.554574.736564.721254.71236yp-0.987572-0.999708-0.999961-1迭代次数 K= 4 ,极小点为 4.71236 ,最小值为 -1word.4- 1. 简述无约束优化方法中梯度法、 共轭梯度法、鲍威尔法的主要区别。答:梯度法是以负梯度方向作为搜索方向,使函数值下降最快,相邻两个迭代点上的函数 相互垂直即是相邻两个搜索

8、方向相互垂直。这就是说在梯度法中, 迭代点向函数极小点靠近的 过程,走的是曲折的路线。这一次的搜索方向与前一次的搜索过程互相垂直,形成“之”字形 的锯齿现象。从直观上可以看到,在远离极小点的位置,每次迭代可使函数值有较多的下降。 可是在接近极小点的位置,由于锯齿现象使每次迭代行进的距离缩短,因而收敛速度减慢。这 种情况似乎与“最速下降”的名称矛盾,其实不然,这是因为梯度是函数的局部性质。从局部 上看,在一点附近函数的下降是最快的,但从整体上看则走了许多弯路,因此函数的下降并不 算快。共轭梯度法是共轭方向法中的一种, 因为在该方法中每一个共轭的量都是依赖于迭代点处 的负梯度而构造出来的,所以称作

9、共轭梯度法。该方法的第一个搜索方向取作负梯度方向,这 就是最速下降法。其余各步的搜索方向是将负梯度偏转一个角度,也就是对负梯度进行修正。 所以共轭梯度法实质上是对最速下降法进行的一种改进,故它又被称作旋转梯度法。鲍威尔法是直接利用函数值来构造共轭方向的一种共轭方向法, 这种方法是在研究其有正1定矩阵 G的二次函数 f(x)xTGx bTx c的极小化问题时形成的。 其基本思想是在不用导2数的前提下,在迭代中逐次构造 G 的共轭方向。在该算法中,每一轮迭代都用连结始点和终点 所产生出的搜索方向去替换原向量组中的第一个向量,而不管它的“好坏” ,这是产生向量组 线性相关的原因所在。因此在改进的算法

10、中首先判断原向量组是否需要替换。如果需要替换, 还要进一步判断原向量组中哪个向量最坏,然后再用新产生的向量替换这个最坏的向量,以保 证逐次生成共轭方向。4- 2. 如何确定无约束优化问题最速下降法的搜索方向?答:优化设计是追求目标函数值最小,因此搜所方向 d 取该点的负梯度方向 - f (x) 。使 函数值在该点附近的范围下降最快。按此规律不断走步,形成以下迭代的算法k 1 k kx x f (x ) ( k=0 ,1,2 ,)k 由于最速下降法是以负梯度方向作为搜索方向,所以最速下降法有称为梯度法为了使目标函数值沿搜索方向- f(x) 能获得最大的下降值,其步长因子 a 应取一维搜 k索的最

11、佳步长。即有k 1 kkkkf x f x akf (x )min f x a f (x )min ( )根据一元函数极值的必要条件和多元复合函数求导公式得;k 1 T k k 1 T kf (x ) f(x ) 0或写成 d d 0 由此可知,在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。而搜索方向就是负 梯度方向,因此相邻的两个搜索方向相互垂直。这就是说在最速下降法中,迭代点向函数极小 点靠近的过程。4-3. 给 定 初 始 值 x0=-7,11T , 使 用 牛 顿 法 求 函 数word.word.f (x1,x2) (x1 2)2 (x1 2x2)2 的极小值点和极小值。解:

12、梯度函数、海赛矩阵分别为2(x1f (x1,x2 )12) 2(x1 2x2 )4(x1 2x2)( 2 分)11242 f(x1,x2)448, 2 f 12141( 4 分)44假设初始值 x0=-7,11T则f(x0)761 分)1161x0 x2 f 102f (x0) 1(2 分)则f(x1)0,0( 1 分)x1满足极值的必要条件,海赛矩阵是正定的,所以是极小点* 1 1 *x* x1, f(x*)1。(2 分)14-4. 以二元函数 f (x1,x2) 为例说明单形替换法的基本原理。答: 如图所示在平面上取不在同一直线上的三个点x1,x2,x3,以它们为顶点组成一单纯形。计算各顶

13、点函数值,设 f(x1)f(x2)f(x3),这说明 x3 点最好, x1 点最差。 为了寻找极小点,一般来说。应向最差点的反对称方向进行搜索,即通过 x1 并穿过 x2x3 的中点 x4 的方向上进行搜索。在此方向上取点 x5使 x5=x4+ ( x4-x1 )x5 称作 x1 点相对于 x4 点的反射点,计算反射点的函数值f (X5),可能出现以下几种情形;1)f (x5)f (x3)即反射点比最好点好要好,说明搜索方向正确,可以往前迈一步, 也就是扩张。2)f(x3)f(x5)f (x2)即反射点比最好点差,比次差点好,说明反射可行,一反射 点代替最差点构成新单纯形3)f (x2)f (

14、x5) f(x1) ,即反射点比次差点差,比最差点好,说明x5 走的太远,应缩回一些,即收缩。4)f(x5)f(x1) ,反射点比最差点还差,说明收缩应该多一些。将新点收缩在 x1x4 之间5)f(x)f(x1) ,说明 x1x4 方向上所有点都比最差点还要差,不能沿此方向进行搜索。5- 1. 简述约束优化方法的分类。 (简述约束优化问题的直接解法、间接 解法的原理、特点及主要方法。 )答 : 直接解法通常适用于仅含不等式约束的问题, 它的基本思路是在 m个不等式约束条件0所确定的可行域内选择一个初始点 x ,然后决定可行搜索方向 d,且以适当的步长 沿 d 方向1 进行搜索,得到一个使目标函

15、数值下降的可行的新点 x ,即完成一个迭代。再以新点为起点, 重复上述搜索过程,满足收敛条件后,迭代终止。所谓可行搜索方向是指,当设计点沿该方向 作微量移动时,目标函数值将下降,且不会越出可行域。产生可行搜索方向的方法将由直接解 法中的各种算法决定。直接解法的原理简单,方法实用。其特点是:1)由于整个求解过程在可行域内进行,因此迭代计算不论何时终点,都可以获得一个比初始点好的设计点。2)若目标函数为凸函数,可行域为凸集,则可保证获得全域最优解。否则,因存在多个局部最优解,当选择的初始点不 相同时,可能搜索到不同的局部最优解。为此,常在可行域内选择几个差别较大的初始点分别 进行计算,以便从求得多

16、个局部最优解中选择最好的最优解。3)要求可行域为有界的非空集,即在有界可行域内存在满足全部约束条件的点,且目标函数有定义。直接解法有:随机方向法、复合形法、可行方向法、广义简约梯度法等。间接解法有不同的求解策略, 其中一种解法的基本思路是将约束优化问题中的约束函数进 行特殊的加权处理后,和目标函数结合起来,构成一个新的目标函数,即将原约束优化问题转 化成一个或一系列的无约束优化问题。再对新的目标函数进行无约束优化计算,从而间接地搜 索到原约束问题的最优解。间接解法是目前在机械优化设计中得到广泛应用的一种有效方法。其特点是:1)由于无约束优化方法的研究日趋成熟, 已经研究出不少有效的无约束最优化方法和程序, 使得间接解 法有了可靠的基础。目前,这类算法的计算效率和数值稳定性也都有了较大提高。2)可以有效地处理具有等式约束的约束优化问题。3)间接算法存在的主要问题是,选取加权因子比较困难,加权因子选取不当,不但影响收敛速度和计算精度,甚至会导致计算失败。间接解法有惩罚函数法和增广乘子法。5- 2. 用内点法求下列问题的最优解:22 min f (x ) x1 x 2 2x1 1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论