初三锐角三角函数_第1页
初三锐角三角函数_第2页
初三锐角三角函数_第3页
初三锐角三角函数_第4页
初三锐角三角函数_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 中小学个性化课外辅导专家锐角三角函数考点一、直角三角形的性质 1、直角三角形的两个锐角互余可表示如下:C=90°A+B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。 A=30°可表示如下: BC=AB C=90°3、直角三角形斜边上的中线等于斜边的一半 ACB=90° 可表示如下: CD=AB=BD=AD D为AB的中点4、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即5、摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项ACB=90

2、° CDAB 6、常用关系式由三角形面积公式可得:ABCD=ACBC考点二、直角三角形的判定 1、有一个角是直角的三角形是直角三角形。2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。3、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。考点三、锐角三角函数的概念 1、如图,在ABC中,C=90° 锐角A的对边与斜边的比叫做A的正弦,记为sinA,即锐角A的邻边与斜边的比叫做A的余弦,记为cosA,即锐角A的对边与邻边的比叫做A的正切,记为tanA,即2、锐角三角函数的概念锐角A的正弦、余弦、正切都叫做A的锐角三角函数3、一

3、些特殊角的三角函数值三角函数 0° 30° 45° 60° 90°sin01cos10tan01不存在4、各锐角三角函数之间的关系(1)互余关系sinA=cos(90°A),cosA=sin(90°A) (2)平方关系(3)倒数关系tanAtan(90°A)=1(4)弦切关系tanA=5、锐角三角函数的增减性当角度在0°90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小)(2)余弦值随着角度的增大(或减小)而减小(或增大)(3)正切值随着角度的增大(或减小)而增大(或减小)考点

4、四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。2、解直角三角形的理论依据在RtABC中,C=90°,A,B,C所对的边分别为a,b,c(1)三边之间的关系:(勾股定理)(2)锐角之间的关系:A+B=90°(3)边角之间的关系:经典例题:类型一:直角三角形求值例1已知RtABC中,求AC、AB和cosB例2已知:如图,O的半径OA16cm,OCAB于C点,求:AB及OC的长例3.已知是锐角,求,的值对应训练:1在RtABC中, C90°,若

5、BC1,AB=,则tanA的值为( ) A B C D2 2在ABC中,C=90°,sinA=,那么tanA的值等于( ).A B. C. D. 类型二. 利用角度转化求值:例1已知:如图,RtABC中,C90°D是AC边上一点,DEAB于E点DEAE12求:sinB、cosB、tanB例2 如图,直径为10的A经过点和点,与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cosOBC的值为( )A B C D对应训练:3.如图,是的外接圆,是的直径,若的半径为,则的值是( ) A B C D4. 如图4,沿折叠矩形纸片,使点落在边的点处已知,AB=8,则的值为 ( ) 类

6、型三. 化斜三角形为直角三角形例1 如图,在ABC中,A=30°,B=45°,AC=2,求AB的长 例2已知:如图,在ABC中,BAC120°,AB10,AC5求:sinACB的值 对应训练1如图,在RtABC中,BAC=90°,点D在BC边上,且ABD是等边三角形若AB=2,求ABC的周长2已知:如图,ABC中,AB9,BC6,ABC的面积等于9,求sinB3. ABC中,A=60°,AB=6 cm,AC=4 cm,则ABC的面积是A.2 cm2 B.4 cm2C.6 cm2 D.12 cm2类型四:利用网格构造直角三角形例1 如图所示,AB

7、C的顶点是正方形网格的格点,则sinA的值为()A B C D对应训练:1如图,ABC的顶点都在方格纸的格点上,则sin A =_.2正方形网格中,如图放置,则tan的值是( ) A B. C. D. 2类型五:取特殊角三角函数的值 1).计算:2)计算:. 3)计算:31+(21)0tan30°tan45° 4) 计算:5)计算: ;类型六:解直角三角形的实际应用例1如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是( )A200米B200米C220米D1

8、00()米例2已知:如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点已知BAC60°,DAE45°点D到地面的垂直距离,求点B到地面的垂直距离BC 例3如图,一风力发电装置竖立在小山顶上,小山的高BD=30m从水平面上一点C测得风力发电装置的顶端A的仰角DCA=60°,测得山顶B的仰角DCB=30°,求风力发电装置的高AB的长对应训练: 1.如图,小聪用一块有一个锐角为的直角三角板测量树高,已知小聪和树都与地面垂直,且相距米,小聪身高AB为1.7米,求这棵树的高度.2如图,为测量某物体

9、AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为()A10米B10米C20米D米类型七:三角函数与圆:例1 如图,直径为10的A经过点和点,与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cosOBC的值为( )A B C D例2. 已知:在O中,AB是直径,CB是O的切线,连接AC与O交于点D,(1) 求证:AOD=2C(2) 若AD=8,tanC=,求O 的半径。对应训练:1.如图,DE是O的直径,CE与O相切,E为切点.连接CD交O于点B,在EC上取一个点F,使EF=BF.(1)求证:BF是

10、O的切线;(2)若, DE=9,求BF的长课后练习:1已知,则锐角A的度数是( ) A B C D 2在RtABC中, C90°,若BC1,AB=,则tanA的值为( )A B C D2 3在ABC中,C=90°,sinA=,那么tanA的值等于( ).A B. C. D. 4. 若,则锐角 . 5将放置在正方形网格纸中,位置如图所示,则tan的值是A B2 C D6如图,AB为O的弦,半径OCAB于点D,若OB长为10, , 则AB的长是 A . 20 B. 16 C. 12 D. 87.在RtABC中,C=90°,如果cosA=,那么tanA的值是( ) A B C D8 如图,在ABC中,ACB=ADC= 90°,若sinA=,则cosBCD的值为 9.计算:10计算.11计算:12已知在RtABC中,C90°,a=,b=.解这个直角三角形13. 已知:在O中,AB是直径,CB是O的切线,连接AC与O交于点D,(3) 求证:AOD=2C(4) 若AD=8,tanC=,求O 的半径。14如图,某同学在楼房的处测得荷塘的一端 处的俯角为,荷塘另一端处、在 同一条直线上,已知米,米, 求荷塘宽为多少米?15如图,一艘海轮位于灯塔

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论