高数极限运算法则_第1页
高数极限运算法则_第2页
高数极限运算法则_第3页
高数极限运算法则_第4页
高数极限运算法则_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、目录 上页 下页 返回 结束 第一章 二、二、 极限的四则运算法则极限的四则运算法则 三、三、 复合函数的极限运算法则复合函数的极限运算法则 一一 、无穷小运算法则、无穷小运算法则 第五节极限运算法则目录 上页 下页 返回 结束 时, 有,min21一、一、 无穷小运算法则无穷小运算法则定理定理1. 有限个无穷小的和还是无穷小 .证证: 考虑两个无穷小的和 . 设,0lim0 xx,0lim0 xx,0,01当100 xx时 , 有2, 02当200 xx时 , 有2取则当00 xx22因此.0)(lim0 xx这说明当0 xx 时,为无穷小量 .目录 上页 下页 返回 结束 说明说明: 无限

2、个无限个无穷小之和不一定不一定是无穷小 !例如,例如,1211lim222nnnnnn1( P57 题 4 (2) )类似可证: 有限个有限个无穷小之和仍为无穷小 . 目录 上页 下页 返回 结束 定理定理2 . 有界函数与无穷小的乘积是无穷小 . 证证: 设, ),(10 xUxMu 又设,0lim0 xx即,0,02当),(20 xUx时, 有M取,min21则当),(0 xUx时 , 就有uuMM故,0lim0uxx即u是0 xx 时的无穷小 .推论推论 1 . 常数与无穷小的乘积是无穷小 .推论推论 2 . 有限个无穷小的乘积是无穷小 .目录 上页 下页 返回 结束 例例1. 求.si

3、nlimxxx解解: 1sinx01limxx利用定理 2 可知.0sinlimxxx说明说明 : y = 0 是xxysin的渐近线 .Oxyxxysin目录 上页 下页 返回 结束 二、二、 极限的四则运算法则极限的四则运算法则,)(lim,)(limBxgAxf则有)()(limxgxf)(lim)(limxgxf证证: 因,)(lim,)(limBxgAxf则有BxgAxf)(,)(其中,为无穷小) 于是)()()()(BAxgxf)()(BA由定理 1 可知也是无穷小, 再利用极限与无穷小BA的关系定理 , 知定理结论成立 .定理定理 3 . 若目录 上页 下页 返回 结束 推论推论

4、: 若,)(lim,)(limBxgAxf且),()(xgxf则.BA( P46 定理定理 5 )()()(xgxfx利用保号性定理证明 .说明说明: 定理 3 可推广到有限个函数相加、减的情形 .提示提示: 令目录 上页 下页 返回 结束 定理定理 4 . 若,)(lim,)(limBxgAxf则有)()(limxgxf)(lim)(limxgxf提示提示: 利用极限与无穷小关系定理及本节定理2 证明 .说明说明: 定理 4 可推广到有限个函数相乘的情形 .推论推论 1 .)(lim)(limxfCxfC( C 为常数 )推论推论 2 .nnxfxf )(lim)(lim( n 为正整数 )

5、例例2. 设 n 次多项式,)(10nnnxaxaaxP试证).()(lim00 xPxPnnxx证证:)(lim0 xPnxx0axaxx0lim1nxxnxa0lim)(0 xPnBA目录 上页 下页 返回 结束 为无穷小(详见书详见书P44)B2B1)(1xg)(0 xUx定理定理 5 . 若,)(lim,)(limBxgAxf且 B0 , 则有)()(limxgxf)(lim)(limxgxf证证: 因,)(lim,)(limBxgAxf有,)(,)(BxgAxf其中,设BAxgxf)()(BABA)(1BB)(AB无穷小有界BA由极限与无穷小关系定理 , 得BAxgxf)()(lim

6、)(lim)(limxgxfBAxgxf)()(因此 为无穷小, 目录 上页 下页 返回 结束 定理定理6 . 若,lim,limByAxnnnn则有)(lim) 1 (nnnyx nnnyxlim)2(,00)3(时且当BynBAyxnnnlimBABA提示提示: 因为数列是一种特殊的函数 , 故此定理 可由定理3 , 4 , 5 直接得出结论 .目录 上页 下页 返回 结束 x = 3 时分母为 0 !31lim3xxx例例3. 设有分式函数,)()()(xQxPxR其中)(, )(xQxP都是多项式 ,0)(0 xQ试证: . )()(lim00 xRxRxx证证: )(lim0 xRx

7、x)(lim)(lim00 xQxPxxxx)()(00 xQxP)(0 xR说明说明: 若,0)(0 xQ不能直接用商的运算法则 .例例4.934lim223xxxx)3)(3() 1)(3(lim3xxxxx6231 若目录 上页 下页 返回 结束 例例5 . 求.4532lim21xxxx解解: x = 1 时,3245lim21xxxx0312415124532lim21xxxx分母 = 0 , 分子0 ,但因目录 上页 下页 返回 结束 例例6 . 求.125934lim22xxxxx解解: ,分子时x.分母22111125934limxxxxx分子分母同除以,2x则54“ 抓大头抓

8、大头”原式目录 上页 下页 返回 结束 一般有如下结果:一般有如下结果:为非负常数 )nmba,0(00mn 当( 如如 P47 例例5 )( 如如 P47 例例6 )( 如如 P47 例例7 )mmmxaxaxa110limnnnbxbxb110,00ba,0,mn 当mn 当目录 上页 下页 返回 结束 三、三、 复合函数的极限运算法则复合函数的极限运算法则定理定理7. 设,)(lim0axxx且 x 满足100 xx时,)(ax 又,)(limAufau则有 )(lim0 xfxxAufau)(lim证证: Aufau)(lim,0,0当au0时, 有 Auf)(axxx)(lim0,0

9、,02当200 xx时, 有ax)(对上述取,min21则当00 xx时ax )(au 故0Axf)(Auf)(,因此式成立.目录 上页 下页 返回 结束 定理定理7. 设,)(lim0axxx且 x 满足100 xx时,)(ax 又,)(limAufau则有 )(lim0 xfxxAufau)(lim 说明说明: 若定理中若定理中,)(lim0 xxx则类似可得 )(lim0 xfxxAufu)(lim目录 上页 下页 返回 结束 例例7. 求求解解: 令.93lim23xxx932xxu, 仿照例4ux3lim6131lim3xx 原式 =uu61lim6166( 见见P34 例例5 )目

10、录 上页 下页 返回 结束 例例8 . 求求解解: 方法方法 1.11lim1xxx,xu 则, 1lim1ux令11112uuxx1 u 原式) 1(lim1uu2方法方法 211lim1xxx1) 1)(1(lim1xxxx) 1(lim1xx2目录 上页 下页 返回 结束 内容小结内容小结1. 极限运算法则(1) 无穷小运算法则(2) 极限四则运算法则(3) 复合函数极限运算法则注意使用条件2. 求函数极限的方法(1) 分式函数极限求法0) 1xx 时, 用代入法( 要求分母不为 0 )0)2xx 时, 对00型 , 约去公因子x)3时 , 分子分母同除最高次幂 “ 抓大头”(2) 复合

11、函数极限求法设中间变量目录 上页 下页 返回 结束 思考及练习思考及练习1.,)(lim,)(lim不存在存在若xgxf)()(limxgxf是否存在 ? 为什么 ?答答: 不存在 . 否则由)()()()(xfxgxfxg利用极限四则运算法则可知)(limxg存在 , 与已知条件矛盾.?321lim2222nnnnnn解解: 原式22) 1(limnnnn)11(21limnn212.问目录 上页 下页 返回 结束 3. 求. )1(lim2xxxx解法解法 1 原式 =xxxx1lim21111lim2xx21解法解法 2 令,1xt tttt1111lim2021则原式 =22011limttt111lim20tt 0t目录 上页 下页 返回 结束 4. 试确定常数 a 使.0)1(lim33xaxx解解 : 令,1xt 则tatt33011lim001atatt3301lim01lim330att故1a因此目录 上页 下页 返回 结束 作业作业P49 1 (5),(7),(9),(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论