自动控制原理MATLAB仿真实验10-12_第1页
自动控制原理MATLAB仿真实验10-12_第2页
自动控制原理MATLAB仿真实验10-12_第3页
自动控制原理MATLAB仿真实验10-12_第4页
自动控制原理MATLAB仿真实验10-12_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验一 MATLAB及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性;二、预习要点1、 系统的典型响应有哪些?2、 如何判断系统稳定性?3、 系统的动态性能指标有哪些?三、实验方法 (一) 四种典型响应1、 阶跃响应:阶跃响应常用格式: 1、;其中可以为连续系统,也可为离散系统。 2、;表示时间范围0-Tn。 3、;表示时间范围向量T指定。 4、;可详细了解某段时间的输入、输出情况。2、 脉冲响应:脉冲函数在数学上的精确定义: 其拉氏变换为:所以脉冲响应即为传函的反拉氏变换。脉冲响应函数常用格式: ; (二)

2、 分析系统稳定性 有以下三种方法:1、 利用pzmap绘制连续系统的零极点图;2、 利用tf2zp求出系统零极点;3、 利用roots求分母多项式的根来确定系统的极点(三) 系统的动态特性分析Matlab提供了求取连续系统的单位阶跃响应函数step、单位脉冲响应函数impulse、零输入响应函数initial以及任意输入下的仿真函数lsim.四、实验内容(一) 稳定性1 系统传函为,试判断其稳定性2 用Matlab求出的极点。%Matlab计算程序num=3 2 5 4 6;den=1 3 4 2 7 2;G=tf(num,den);pzmap(G);p=roots(den)运行结果:p =

3、-1.7680 + 1.2673i -1.7680 - 1.2673i 0.4176 + 1.1130i 0.4176 - 1.1130i -0.2991 图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。%求取极点num=1 2 2;den=1 7 3 5 2;p=roots(den)运行结果:p = -6.6553 0.0327 + 0.8555i 0.0327 - 0.8555i -0.4100 故的极点s1=-6.6553 , s2=0.0327 + 0.8555i , s3= 0.0327 - 0.8555i , s4=-0.41 (二)阶跃响应1. 二

4、阶系统1)键入程序,观察并记录单位阶跃响应曲线2)计算系统的闭环根、阻尼比、无阻尼振荡频率,并记录3)记录实际测取的峰值大小、峰值时间及过渡过程时间,并填表:由图1-3及其相关理论知识可填下表:=1.0472实际值理论值峰值Cmax1.351.3509峰值时间tp1.091.0472过渡时间ts3.54.54)修改参数,分别实现和的响应曲线,并记录5)修改参数,分别写出程序实现和的响应曲线,并记录%单位阶跃响应曲线num=10;den=1 2 10;step(num,den); title('Step Response of G(s)=10/(s2+2s+10)');图1-2

5、二阶系统单位阶跃响应曲线 %计算系统的闭环根、阻尼比、无阻尼振荡频率 num=10;den=1 2 10;G=tf(num,den); wn,z,p=damp(G)运行结果:wn = 3.1623 3.1623z = 0.3162 0.3162p = -1.0000 + 3.0000i -1.0000 - 3.0000i由上面的计算结果得系统的闭环根s= -1±3i ,阻尼比、无阻尼振荡频率图1-3 单位阶跃响应曲线(附峰值等参数)第4)题:%kosi=1阶跃响应曲线wn=sqrt(10);kosi=1;G=tf(wn*wn,1 2*kosi*wn wn*wn);step(G);ti

6、tle('Step Response of kosi=1');%kosi=2的阶跃响应曲线wn=sqrt(10);kosi=2;G=tf(wn*wn,1 2*kosi*wn wn*wn);step(G);title('Step Response of kosi=2');当wn不变时,由和的响应曲线可归纳:平稳性,由曲线看出,阻尼系数 ,超调量,响应的振荡,平稳性好;反之, ,振荡,平稳性差。快速性,ts,快速性差;反之, , ts ;但过小,系统响应的起始速度较快,但振荡强烈,影响系统稳定。第5)题:%wn1=0.5w0的阶跃响应曲线w0=sqrt(10);ko

7、si=1/sqrt(10);wn1=0.5*w0;G=tf(wn1*wn1,1 2*kosi*wn1 wn1*wn1);step(G);title('Step Response of wn1=0.5w0');图1-6 wn1=0.5w0的阶跃响应曲线%wn2=2w0的阶跃响应曲线w0=sqrt(10);kosi=1/sqrt(10);wn2=2*w0;G=tf(wn2*wn2,1 2*kosi*wn2 wn2*wn2);step(G);title('Step Response of wn2=2w0');图1-7 wn2=2w0的阶跃响应曲线由图1-6和图1-7得

8、:当一定时,n,ts,所以当一定时,n越大,快速性越好。2. 作出以下系统的阶跃响应,并与原系统响应曲线进行比较,作出相应的实验分析结果(1),有系统零点的情况(2),分子、分母多项式阶数相等(3),分子多项式零次项为零(4),原响应的微分,微分系数为1/10%各系统阶跃响应曲线比较G0=tf(10,1 2 10);G1=tf(2 10,1 2 10);G2=tf(1 0.5 10,1 2 10);G3=tf(1 0.5 0,1 2 10);G4=tf(1 0 ,1 2 10);step(G0,G1,G2,G3,G4); grid on;title('实验1.2 Step Respon

9、se 曲线比较');图1-8 各系统的阶跃响应曲线比较3. 单位阶跃响应: 求该系统单位阶跃响应曲线,并在所得图形上加网格线和标题%单位阶跃响应G=tf(25,1 4 25);step(G);grid on;title('实验1.3 Step Response of G(s)=25/(s2+4s+25)');图1-9 阶跃响应曲线(三)系统动态特性分析用Matlab求二阶系统和的峰值时间上升时间调整时间超调量。%G1阶跃响应G1=tf(120,1 12 120);step(G1);grid on;title(' Step Response of G1(s)=120/(s2+12s+120)');图1-10 阶跃响应曲线由图知=0.336s,=0.159s,=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论