

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中物理竞赛热学教程第一讲温度和气体分子运动论第二讲热力学第一定律第二讲热力学第一定律 2.12.1 改变内能的两种方式热力学第一定律2 2. 1 1. 1 1、作功和传热作功可以改变物体的内能。 如果外界对系统作功 W W。作功前后系统的内能分别为 已、E2, 则有E2_E“二W没有作功而使系统内能改变的过程称为热传递或称传热。它是物体之间存在温度差而发 生的转移内能的过程。在热传递中被转移的内能数量称为热量,用Q Q 表示。传递的热量与内能变化的关系是E2_ Ej= Q做功和传热都能改变系统的内能,但两者存在实质的差别。作功总是和一定宏观位 移或定向运动相联系。是分子有规则运动能量向分子无
2、规则运动能量的转化和传递;传 热则是基于温度差而引起的分子无规则运动能量从高温物体向低温物体的传递过程。2 2. 1 1. 2 2、气体体积功的计算1 1、准静态过程一个热力学系统的状态发生变化时,要经历一个过程,当系统由某一平衡态开始变化, 状态的变化必然要破坏平衡,在过程进行中的任一间状态,系统一定不处于_平衡态。如当推动活塞压缩气缸中的气体时,气体的体积、温度、压强均要A Ah发生变化。在压缩气体过程中的任一时刻,气缸中的气体各部分的压强和温-度并不相同,在靠近活塞的气体压强要大一些,温度要高一些。在热力学中,B Bh为了能利用系统处于平衡态的性质来研究过程的规律,我们引进准静态过程-的
3、概念。如果在过程进行中的任一时刻系统的状态发生的实际过程非常缓慢图2-1-1地进行时,各时刻的状态也就非常接近平衡态,过程就成了准静态过程。因 此,准静态过程就是实际过程非常缓慢进行时的极限情况对于一定质量的气体,其准静态过程可用P V图、P T图、v-T图上的一条曲线来表示。注意,只有准静态过程才能这样表示。2 2、功在热力学中,一般不考虑整体的机械运动。热力学系统状态的变化,总是通过做功或热 传递或两者兼施并用而完成的。在力学中,功定义为力与位移这两个矢量的标积。在热力学 中,功的概念要广泛得多,除机械功外,主要的有:流体体积变化所作的功;表面张力的功; 电流的功。(1)(1)机械功有些热
4、力学问题中,应考虑流体的重力做功。如图2-1-12-1-1 所示,一直立的高 2h2h 的封闭圆筒,被一水平隔板 C C 分成体积皆为 V V 的两 部分。其中都充有气体, A A 的密度A较小,B B 的密度较大。现 将隔板抽走,使 A A、B B 气体均匀混合后,重力对气体做的总功为PS.*:“|J II- 口1十 X+图 2-1-2高中物理竞赛热学教程第二讲 热力学第一定律hUAw -LVg2-BVg2=2LA-B)Vgh(2 2)流体体积变化所做的功我们以气体膨胀为例。设有一气缸,其中气体的压强为P P,活塞的面积 S S(图 2-1-22-1-2)。当活塞缓慢移动一微小距离X时,在这
5、一微小的变化过程中,认为压强 P P 处处均匀而且不变,因此是个准静态过程。气体对 外界所作的元功W= PSX二p:V,外界(活塞)对气体做功w= pV,当气体膨胀时.:V 0 0,外界对气体做功 w wv0 0;气体压缩时= =V Vv0 0,外界对气体做功 W W 0 0。如图 2-1-32-1-3 所示的 A A、B B 是两个管状容器,除了管较粗的部分高低不 同之外,其他一切全同。将两容器抽成真空,再同时分别插入两个水银池中,水银沿管上升。大气压强皆为P P,进入管中水银体积皆为 V V,所以大气对两池中水银所做功相等,但由于克服重力做功 A A 小于 B B,所以 A A 管中水银内
6、能增加较 多,其温度应略高。准静态过程可用 p-Vp-V 图上一条曲线来表示,功值W W 为P-VP-V 图中过程曲线下的面积,当气体被压缩时W W0 0。反之w wv0 0。如图 2-1-42-1-4 所示的由 A A 态到 B B 态的三种过程,气体 都对外做功,由过程曲线下的面积大小可知:ACACB B过程对外 功最大,ABAB 次之,ADBADB 的功最小。由此可知,在给定系统的初 态和终态,并不能确定功的数值。功是一个过程量,只有当系统 的状态发生变化经历一个过程,才可能有功;经历不同的过程, 功的数值一般而言是不同的。(3 3)表面张力的功液面因存在表面张力而有收缩趋势,要加大液面
7、就得作功。设想一沾有液膜的铁丝框 ABCDABCD(图 2-1-52-1-5)。长为 2 2aI I 的力作 用在 BCBC 边上。要使 BCBC 移动距离X X,则外力 F F作的功为W=FW=FX=2X=2al lX=X=aS S。式中a为表面张力系数,a指表面上单位长度直线两侧液面的相互拉力,S S 指 BCBC 移动中液膜两个表面面积的总变化。外力克服表面张力的功转变为液膜的表面能。由此可见,作功是系统与外界相互作用的一种方式,也是两者的能量相互交换的一 种方式。这种能量交换的方式是通过宏观的有规则运动来完成的。我们把机械功、电磁 功等统称为宏观功。2 2. 1 1. 3 3、热力学第
8、一定律当系统与外界间的相互作用既有做功又有热传递两种方式时,设系统在初态的内能E1,经历一过程变为末态的内能E2,令EE = = E E2 -E1。在这一过程中系统从外界吸收 的热量为 Q Q,外界对系统做功为如,则厶E=W+QE=W+Q。式中各量是代数量,有正负之分。系 统吸热 Q Q0 0,系统放热 Q QV0 0;外界做功 W W0 0,系统做功 W WV0 0;内能增加B BA A 1I.11 片1 1HInT图 2-1-3图 2-1-5D DC C高中物理竞赛热学教程第二讲 热力学第一定律E E0 0,内能减少E EV0 0。热力学第一定律是普遍的能量转化和守恒定律在热现象 中的具体
9、表现。2 2. 1 1. 4 4、 热量当一个热力学系统与温度较高的外界热接触时,热力学系统的温度会升高,其内能 增加,状态发生了变化。在这个状态变化的过程中,是外界把一部分内能传递给了该系 统,我们就说系统从外界吸收了热量。如果系统与外界没有通过功来交换能量,系统从 外界吸收了多少热量,它的内能就增加多少。热量是过程量。做功和传递热量都可以使系统的内能发生变化,但它们本质上是有区别的,做功是 通过物体的宏观位移来完成的,是通过有规则的运动与系统内分子无规则运动之间的转 换,从而使系统的内能有所改变;传递热量是通过分子之间的相互作用来完成的,是系 统外物体分子无规则运动与系统内分子无规则运动之
10、间的传递,从而使系统的内能有所 改变。为了区别起见,我们把热量传递叫做微观功。2 2. 1 1. 5 5、气体的自由膨胀气体向真空的膨胀过程称为气体的自由膨胀。气体自由膨胀时,没有外界阻力,所 以外界不对气体做功 W=0W=0 ;由于过程进行很快,气体来不及与外界交换热量,可看成是 绝热过程 Q=0Q=0 ;根据热力学第一定律可知,气体绝热自由膨胀后其内能不变,即E=0E=0如果是理想气体自由膨胀,其内能不变,气体温度也不会变化,即T=0T=0 ;如果是离子气体自由膨胀,虽内能不变,但分子的平均斥力势能会随着体积的增大而减小,分子 的平均平动动能会增加,从而气体温度会升高,即T T0 0;如果
11、是存在分子引力的气体自由膨胀后,其内能不变,但平均分子引力势能会增大,分子平均平动动能会减小,气 体温度会降低,即0 0。例 1 1、绝热容器 A A 经一阀门与另一容积比 A A 的容积大得多的绝热容器 B B 相连。开始时阀门关闭,两容器中盛有同种理想气体,温度均为3030C,B B 中气体的压强是 A A 中的两倍。现将阀门缓慢打开,直至压强相等时关闭。问此时容器A A 中气体的温度为多少?假设在打开到关闭阀门的过程中处在A A 中的气体与处在 B B 中的气体之间无热交换。已知每摩尔该气体的内能为 E=2.5RTE=2.5RT。分析:因为 B B 容器的容积远大于 A A 的容积,所以
12、在题述的过程中,B B 中气体的压强和温度均视为不变。B B 容器内部分气体进入 A A 容器,根据题设,A A 容器内气体是个绝热过 程。外界(B B 容器的剩余气体)对 A A 气体做功等于其内能的增量,从而求出 A A 气体的最终温度。解:设气体的摩尔质量为 M M , A A 容器的体积 V V,打开阀门前,气体质量为 m m,压强为 p p,温度为 T T。打开阀门又关闭后, A A 中气体压强为 2p2p,温度为T,质量为m,则有r rpVmRT2pV二巴RTMM进入 A A 气体质量R T T,设这些气体处在 B B 容器中时所占体积为二m2MpRTT 1T_2)V。为把这些气体
13、压入A A 容器,B B 容器中其他气体对这高中物理竞赛热学教程第二讲 热力学第一定律W = E2TTPV(T_I)= 5pv(i)T = 353K例 2 2、一根长为 76cm76cm 的玻璃管,上端封闭,插入水银中。水银充满管子的一部分。 封闭体积内有空气1.0 10mol,如图 2-1-62-1-6 所示,大气压为*76cmHg76cmHg。空气的摩尔定容热容量CV二20.5J mo1 K,当玻:76cm76cm璃管温度降低 1010C时,求封闭管内空气损失的热量。分析:取封闭在管内的空气为研究对象,为求出空气在降温过 程中的放热,关键是确定空气在降温过程中遵循的过程方程。由于图2-1-
14、6管内空气压强 p p 等于大气压强与管内水银柱压强之差,因管长刚好 76cm,76cm,故 P P 与空气柱高度成正比,即封闭气体的压强与其体积成正比。随着温度降低, 管内水银柱上升,空气的压强与体积均减小,但仍保持正比关系。解:设在降温过程中管内封闭空气柱的高度为h h,水银柱高度为h,则h h= 76cm。管内封闭空气的压强为p二P。-gh二:?gh式中P为水银密度,上式表明,在降温过程中,空气的压强P P 与空气柱高度 h h 成正比,因管粗细均匀,故 p p 与空气体积 V V 成正比,即P%V V这就是管内封闭空气在降温过程中所遵循的过程方程。1C = CV R空气在此过程中的摩尔
15、热容量2。0放=一0吸=一n C=To1=-10(20.58.31)( -10)2= 0.247J本题也可直接由热力学第一定律求解,关键要求得空气膨胀做功。由题给数据,可分析得空气对水银柱做功是线性力做功的情形。 2.22.2 热力学第一定律对理想气体的应用2 2. 2 2. 1 1、等容过程P =气体等容变化时,有T恒量,而且外界对气体做功W= - P“V=0。根据热力学第一定律有E=QE=Q。在等容过程中,气体吸收的热量全部用于增加内能,温度升高;反之,气体放出的热量是以减小内能为代价的,温度降低。W =2P V些气体做的功为2T二PV ( -1)A A 中气体内能的变化m 5R(T -T
16、)。根据热力学第一定律有高中物理竞赛热学教程第二讲 热力学第一定律Q = .;:E = n Cv=T V Lp2式中Cv ()v-2R.T. T 2。2 2. 2 2.1 1、等压过程V V气体在等压过程中, 有T恒量,如容器中的活塞在大气环境中无摩擦地自由移动。根据热力学第一定律可知:气体等压膨胀时,从外界吸收的热量 Q Q,一部分用来增加内能,温度升高,另一部分用于对外作功;气体等压压缩时,外界对气体做的功和气体 温度降低所减少的内能,都转化为向外放出的热量。且有W - -p V二nR TQ = nCpLTE二nQ:T二丄p V2定压摩尔热容量Cp与定容摩尔热容量Cv的关系有Cp二CvR。
17、该式表明:1mol1mol 理想气体等压升高 1K1K 比等容升高 1k1k 要多吸热 8.31J8.31J,这是因为 1mol1mol 理想气体等压膨胀 温度升高 1K1K 时要对外做功 8.31J8.31J 的缘故。2 2. 2 2. 3 3、等温过程气体在等温过程中, 有 pV=pV=恒量。例如,气体在恒温装置内或者与大热源想接触时所 发生的变化。理想气体的内能只与温度有关,所以理想气体在等温过程中内能不变,即 E=0E=0,因此有 Q=-WQ=-W。即气体作等温膨胀,压强减小,吸收的热量完全用来对外界做功;气体作等 温压缩,压强增大,外界的对气体所做的功全部转化为对外放出的热量。2 2
18、. 2 2. 4 4、绝热过程气体始终不与外界交换热量的过程称之为绝热过程,即Q=0Q=0。例如用隔热良好的材料把容器包起来,或者由于过程进行得很快来不及和外界发生热交换,这些都可视作绝 热过程。pV =理想气体发生绝热变化时,p p、V V、T三量会同时发生变化,仍遵循T恒量。根据热力学第一定律,因 Q=0Q=0,有W = E= nCvT冷(P2V2- PM)这表明气体被绝热压缩时,外界所作的功全部用来增加气体内能,体积变小、温度 升高、压强增大;气体绝热膨胀时,气体对外做功是以减小内能为代价的,此时体积变 大、温度降低、压强减小。气体绝热膨胀降温是液化气体获得低温的重要方法。例:0.020
19、kg0.020kg 的氦气温度由 1717C升高到 2727C。若在升温过程中,体积保持不变,高中物理竞赛热学教程第二讲 热力学第一定律压强保持不变;不与外界交换热量。试分别求出气体内能的增量,吸收的热量,外 界对气体做的功。气体的内能是个状态量,且仅是温度的函数。在上述三个过程中气体内能的增量是相同的且均为:E 二 nQ:T =5 1.5 8.31 10=623J等容过程中W = 0,Q=:E =623 J2在等压过程中Q Cp.T = n(Cv R) T=5 2.5 8.31 10 =1.039 103JW Q二416J3 在绝热过程中Q= 0,W =623J1mol1mol 温度为 27
20、27C的氦气,以100m s的定向速度注入体积为15L15L 的真空容器中,容器四周绝热。求平衡后的气体压强。平衡后的气体压强包括两部分:其一是温度2727C,体积 15L15L 的 2mol2mol 氦气的压强其二是定向运动转向为热运动使气体温度升高T所导致的附加压强p。即有氦气定向运动的动能完全转化为气体内能的增量:mv2= n3RT2 22v3V-(3.3 1 051.7 1 03)Pa3.3 105Pa2 2. 2 2. 5 5、其他过程理想气体的其他过程,可以灵活地运用下列关系处理问题。 气态方程:pV-nRT热力学第一定律:E二 W W Q=nCVT功:W=W= ( (: :-V-
21、V 图中过程曲线下面积) )过程方程:由过程曲线的几何关系找出过程的P PV V 关系式。若某理想气体经历 V-TV-T图中的双曲线过程,其过程方程为:2VT=CVT=C 或者PV=C=C2 2. 2 2. 6 6、绝热过程的方程绝热过程的状态方程是PMPV;其中u=Cp/Cv2 2. 2 2. 7 7、循环过程系统由某一状态出发,经历一系列过程又回到原 来状态的过程,称为循环过程。热机循环过程在P-VP-VP0p二nRT0nV0RT。V高中物理竞赛热学教程第二讲 热力学第一定律图 2-2-1高中物理竞赛热学教程第二讲 热力学第一定律图上是一根顺时针绕向的闭合曲线( (如图 2-2-1)2-2
22、-1)。系统经过循环过程回到原来状态,因此 E=0由图可见,在 ABCABC 过程中,系统对外界作正功,在CDACDA 过程中,外界对系统作正功。在热机循环中,系统对外界所作的总功:W=(P-V图中循环曲线所包围的面积) )而且由热力学第一定律可知:在整个循环中 系统绕从外界吸收的热量总和Q1,必然大于放出的热量总和Q2,而且Qi-Q2=W热机效率表示吸收来的热量有多少转化为有用的功,是热机性能的重要标志之一, 效率的定义为WQ21 -QiQi例 1 1 一台四冲程内燃机的压缩比r=9.5r=9.5,热机抽出的空气和气体燃料的温度为2727C,在 larm=larm=13KPa压强下的体积为V
23、o, 如图 2-2-2-2-2 2所示,从 1 1 2 2 是绝热压缩过程;2 2 3 3 混合气体燃爆,压强加倍;从4 4 活塞外推,气体绝热膨胀至体积9.討。;这是排气阀门打开,压强回到初始值 larm(larm(压缩比是气缸最大与最小体积 比,丫是比热容比) )。(1)(1)确定状态 1 1、2 2、3 3、4 4 的 压强和温度;(2)(2)求此循环的热效率。分析:本题为实际热机的等容加热循环一一奥托循环。其热效率取决于压缩比。解:对于绝热过程,有pV二恒量,结合状态方程,有TV心恒量。(1)(1)状态 1 1,P1=1atm,T1=300KT2V0二TE)得T2= 300 x 2.4
24、61 = 738.3K,p2= 23.38atm在状态 3 3,p3=2p2=46.76atm,T3=岔2=14766K用绝热过程计算状态 4 4,由T4(V。)丄二T3V0丄得T4= 600K, ,p4= 2atm。(2)(2)热效率公式中商的分母是 2 2T3 3 过程中的吸热,这热量是在这一过程中燃烧燃料所 获得的。因为在这一过程中体积不变,不做功,所以吸收的热量等于气体内能的增加, 即CVm(T3 -T2),转化为功的有用能量是 2 2T3 3 过程吸热与 1 1 过程放热之差:CVm(T3_T1) CVm(T_T1)热效率为:图 2-2-2高中物理竞赛热学教程第二讲 热力学第一定律=
25、Cvm(TiT3-12-丁4)=1T4Cvm(T3T2)T3-T21111绝热过程有:T4V4_ T3V3, ,T1V1 =T2V2因为V4 =Vi, ,V2 =V3上=1_EZl=(冷)=()J-故T1T2, ,T2, ,而T2V1r因此=1=1 - - r r 。热效率只依赖于压缩比,n=59.34%=59.34%,实际效率只是上述结果的一半稍大些,因为大量的热量耗散了,没有参与循环。 2-32-3 热力学第二定律2 2. 3 3. 1 1、卡诺循环 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程为循环过程,简称循环。在P-VP-V 图上,物质系统的循环过程用一个闭合
26、的曲线表示。经历个循环,回到初始状态时,内能不变。利用物质系统 功的装置叫做热机。在循环过程中,使工作物从 膨胀作功以后的状态,再回到初始状态,周而复 始进行下去,并且必而使工作物在返回初始状态 的过程中, 外界压缩工作物所作的功少于工作物 在膨胀时对外所做的功,这样才能使工作物对外 做功。获得低温装置的致冷机也是利用工作物的 循环过程来工作的,不过它的运行方向与热机中 工作物的循环过程相反。卡诺循环是在两个温度恒定的热源之间工作 的循环过程。我们来讨论由平衡过程组成的卡诺 循环,工作物与温度为T1的高温热源接触是等温 膨胀过程。同样,与温度为T2的低温热源接触而 放热是等温压缩过程。因为工作
27、物只与两个热源交换能量,所以当工作物脱离两热源时所进行的 过程,必然是绝热的平衡过程。如图2-3-12-3-1 所示,在理想气体卡诺循环的 P-VP-V 图上,曲线 abab 和 cdcd 表示温度为T1和T2的两条等温线,曲线 bebe 和 dada 是两条绝热线。我们先讨论以状态 a a 为始点,沿闭合曲线 abedaabeda 所作的循环过程。 在 abeabe 的膨胀过程中,气体对外做功 W W 是曲线 abeabe 下面的面积,在 edaeda 的压缩过程中,外界对气体做功W是曲线 edaeda 下面的面积。气体对外所做的净功W二阿-她)就是闭Qi= nRTIn-合曲线 abcdaa
28、bcda 所围面积,气体在等温膨胀过程abab 中,从高温热源吸热Vi,V3Q2= n RT2In 气体在等温压缩过程 CdCd 中,向低温热源放热V4。应用绝热方程r 1r 1r 1rlT1V2二T2V3和TM二T2V4得ViV4( (称为工作物) )持续不断地把热转换为高中物理竞赛热学教程第二讲 热力学第一定律所以V3V2Q2= n RT?I n - = n RT2I n -V4ViQiT?=TT卡诺热机的效率耳_ W_Q1 -Q2_ iT2QiQiT|我们再讨论理想气体以状态a a 为始点,沿闭合曲线 adcbaadcba 所分的循环过程。显然,气体将从低温热源吸取热量Q2,又接受外界对
29、气体所作的功W W,向高温热源传热Qi=WQ2。由于循环从低温热源吸热,可导致低热源的温度降得更快,这就是致冷 机可以致冷的原理。致冷机的功效常用从低温热源中吸热Q2和所消耗的外功 W W 的比值来Q2Q2T?- - -一量度,称为致冷系数,即W Qi-Q2,对卡诺致冷机而言,Ti-丁2。有一诺致冷机,从温度为-10-10C的冷藏室吸取热量,而向温度为2020C的物体放出热量。设该致冷机所耗功率为15kW15kW 问每分钟从冷藏室吸取的热量是多少?T2263-令Ti=293K,T2=263K,则Ti30。每分钟作功W =15 10360 =9 105J,所以每分钟从冷藏室中吸热Q2八W = 7
30、.89 106J。2 2. 3 3. 2 2、热力学第二定律表述 1 1:不可能制成一种循环动作的热机,只从一个热源吸取热量,使之全部变为有 用的功,而其他物体不发生任何变化。表述 2 2:热量不可能自动地从低温物体转向高温物体。在表述 1 1 中,我们要特别注意“循环动作”几个字,如果工作物进行的不是循环过程,如气体作等温膨胀,那么气体只使一个热源冷却作功而不放出热量便是可能的。该叙述反映了热功转换的一种特殊规律,并且表述1 1 与表述 2 2 具有等价性。我们用反证法来证明两者的等价性。高中物理竞赛热学教程第二讲 热力学第一定律假设表述 1 1 不成立,亦即允许有一循环 可以从高温热源取得
31、热量Q1,并全部转化为功 W W 这样我们再利用一个逆卡诺循环口接受E E 所作功 W(=W(=Q1) ),使它从低温热源T2取得热量Q2, 输出热量Q1Q2给高温热源。现在把这两个循 环总的看成一部复合致冷机,其总的结果是, 外界没有对他做功而它却把热量Q2从低温热源传给了高温热源。这就说明,如果表述1 1 不成立,则表述 2 2 也不成立。反之,也可以证明 如果表述 2 2 不成立,则表述 1 1 也必然不成立。试证明在 P-VP-V 图上两条绝热线不能相交。假定两条绝热线I与n在P-V图上相交于一画一等温线川,使它与两条绝热线组成一个循环。这个循环只有一个单热源,它把吸收 的热量全部转变
32、为功,即n=1=1,并使周围没有变化。显然,这是违反热力学第二定律的, 因此两条绝热线不能相交。2 2. 3 3. 3 3、卡诺定理设有一过程,使物体从状态 A A 变到状态 B B。对它来说,如果存在另一过程,它不仅 使物体进行反向变化,从状态B B 回复到状态 A A,而且当物体回复到状态 A A 时,周围一切也都各自回复到原状,则从状态A A 进行到状态 B B 的过程是个可逆过程。反之,如对于某一过程,不论经过怎样复杂曲折的方法都不能使物体和外界恢复到原来状态而不引起其他变化,则此过程就是不可逆过程。气体迅速膨胀是不可逆过程。气缸中气体迅速膨胀时,活塞附近气体的压强小于气体内部的压强。
33、设气体内部的压强为P P,气体迅速膨胀一微小体积AV V,则气体所作的功W W,小于 p pAV V。然后,将气体压回原来体积,活塞附近气体的压强不能小于气体内部的 压强,外界所作的功W2不能小于 p pV V。因此,迅速膨胀后,我们虽然可以将气体压缩, 使它回到原来状态,但外界多作功W W2-W-W ;功将增加气体的内能,而后以热量形式释放。 根据热力学第二定律,我们不能通过循环过程再将这部分热量全部变为功;所以气体迅 速膨胀的过程是不可逆过程。只有当气体膨胀非常缓慢,活塞附近的压强非常接近于气 体内部的压强 p p 时,气体膨胀一微小体积V V 所作的功恰好等于 p pAV V,那么我们才
34、能非 常缓慢地对气体作功 p pAV V,将气体压回原来体积。所以,只有非常缓慢的亦即平衡的膨 胀过程,才是可逆的膨胀过程。同理,只有非常缓慢的亦即平衡的压缩过程,才是可逆 的压缩过程。在热力学中,过程的可逆与否和系统所经历的中间状态是否平衡密切相关。 实际的一切过程都是不可逆过程。卡诺循环中每个过程都是平衡过程,所以卡诺循环是理想的可逆循环卡诺定理指出:(1)(1)在同样高温( (温度为T1) )和低温( (温度为T2) )之间工作的一切可逆机,不论用什么工作物,图 2-3-2点 A A,如图 2-3-22-3-2 所示。现在,在图上再高中物理竞赛热学教程第二讲 热力学第一定律于可逆机,即F
35、面我们给予证明。设高温热源Ti,低温热源T2,一卡诺理想可逆机 E E 与另一可逆机E,在此两热源之 间工作,设法调节使两热机可作相等的功W W。现使两机结合,由可逆机E从高温热源吸卡诺机 E E,而使 E E 逆向进行,从低温热源吸热Q2=Qi i-W-W,向高温热源放热Ql l,其效W* * = = -F FF F率为Qi。我们用反证法,先设.。由此得QiVQi,即Q2VQ2。当两机一起运行时,视他们为一部复合机,结果成为外界没有对这复合机作功,而复合机却能将热量Q2 -Q2=Qi -Qi从低温热源送至高温热源, 违反了热力学第二定律。 所以 不可能。反之,使卡诺机 E E正向运行,而使可
36、逆机E逆行运行,则又可证明 为不可能,即只有 = =才成立,也就是说在相同的Ti和T2两温度的高低温热源间工作的一i丄切可逆机,其效率均为Ti。如果用一台不可逆机E”来代替上面所说的E。按同样方法可以证明 为不可能,即只有 o由于E”是不可逆机,因此无法证明 ,即在相同Ti和T2的两温度的高低温热源间工作的不可逆机,它的效率不可能大于可逆机 的效率。2 2. 3 3. 4 4、热力学第二定律的统计意义对于热量传递,我们知道,高温物体分子的平均动能比低温物体分子的平均动能要 大,两物体相接触时,能量从高温物体传到低温物体的概率显然比反向传递的概率大得 多。对于热功转换,功转化为热是在外力作用下宏观物体的有规则定向运动转变为分子 无规则运动的过程,这种转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030国内交通车辆行业市场发展分析及竞争格局与投资机会研究报告
- 2025-2030啤酒大麦种植行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030冷压疗法产品行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030关节成形术行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国豪华RTA(即装)家具行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国网络管理交换机行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国国内快递服务行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球及中国内容营销平台行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030全球及中国临床营养补充剂行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2025-2030全球与中国对辊造粒机行业发展对策及多样化经营方向研究报告
- erp系统运行使用管理制度
- 大国工匠彭祥华事迹介绍PPT课件(带内容)
- 脊柱骨折的急救与护理新
- TISC 0022-2023 数字孪生城市平台技术要求
- 小学英语人教(精通)版三年级起点《Fun time 1 Recycle 1》优秀教学设计五年级下册-五年级英语教案
- 【施工】电信入围施工组织方案
- 2022《煤矿安全规程》
- 精选常熟市化工企业名单
- 超详细大鼠的解剖图谱
- GB/T 17048-2017架空绞线用硬铝线
- 物资需求预测方法
评论
0/150
提交评论