地统计学复习知识点_第1页
地统计学复习知识点_第2页
地统计学复习知识点_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1. 地统计学概念:地统计学是以区域化变量理论为基础,以变异函数为主要工具,研究在空 间分布上既有随机性又有结构性,或空间相关和依赖性的自然现象的科学。2. 经典统计学与地统计学的区别:经典统计学:研究纯随机变量、变量可无限次重复观 测或大量重复观测、 样本相互独立、 研究样本的数字特征地统计学: 研究区域化变量、变 量不能重复试验、 样本具有空间相关性、 研究样本的数字特征和区域化变量的空间分布特征3. 地统计学的起源和发展 -:4. 总体:指根据统计分析或研究目的而确定的同类事物或现象的全体。有时也把具有共同性 质的元素所组成的集合称为总体。5. 样本:从总体中抽取若干元素而构成的集合称为

2、样本,也称子样。6. 频数:将变量按大小顺序排序, 并按一定间距分组, 称变量在各组出现的次数, 称为频数。7随机变量的数字特征:集中性度量:算数平均值中数众数数学期望;离散型 度量极差离差方差协方差矩变异系数;形态度量(偏度(对称程度)和峰度(高低程度)是描述随机变量频率分布形态的两个定量指标)8. 相关关系:指事物之间的关系数值存在着一定的依存关系,即某一现象在其发展变化中, 当数量上为一确定值时, 与之有联系的其他现象可以有若干个数值与之对应, 但这些值按某 种规律在一定范围内进行波动。9. 相关关系的特点:一个变量的取值不能由另一个变量唯一确定,也不能用函数形式给予描 述,但并不是无规

3、律可行的。10. 相关关系的种类:按所涉及的变量的多少:单相关:两个变量之间的相关。复相关: 三个或三个以上变量之间的相关。 按相关关系的表现形态: 直线相关: 如果两个变量之间 相互变化近似为一条直线, 则称为直线相关。 曲线相关: 变量之间的相互变化近似为一条曲 线。简单相关关系下按变量变动的方向:正相关:两个变量同方向变化。负相关:两个变 量反方向变化。无相关(或零相关) :两个量的变化互不影响。11. 相关关系的判断方法:作图法,假设检验法。12. 偏相关:当研究某一个要素对另一个要素的影响或相关程度时,暂不考虑其它要素的影 响,而单独研究那两个要素之间的相互关系的密切程度时, 则称为

4、偏相关。 用来度量偏相关 程度的统计量称为偏相关系数。13. 偏相关系数性质: 系数范围在 -1 和 1 之间; 系数的绝对值越大, 其偏相关程度越大; 系数的绝对值小于等于由同一系列资料求得的负相关系数。13. 复相关系数:几个要素同时与某一个要素之间的相关关系。14. 回归分析:回归分析就是对具有高度相关关系的现象,根据其相关的形态,建立一个适 宜的数学模型(回归方程) ,来近似地反映变量之间的一般变化关系,以便于进行估计或预 测的统计方法。15. 一元线性回归分析步骤:建立一元线性回归方程:y=a+bx。回归系数的估计。对一元回归方程的评价:拟合优度的评价,回归方程显著性检验。16. 非

5、线性回归模型:指数曲线y=de"x可以将其转化为直线形式:y' =a+bx' , a=lnd对 数曲线 y= a + blnx可以将其转化为直线形式:y' =a+bx'幕函数曲线 y=dxb可以将其转化为直线形式:y'=a+bx',其中,a=lnd双曲线 1/y=a+b/x可转化为直线形式: y' = a+bx'对于 S 型曲线=1/( + A(-),可转化为直线形式: y' =a+bx'17. 地理数据:地理数据是用一定的测度标准去衡量地理要素而取得的地理信息。18. 地理数据类型:定量地理数据:间隔尺

6、度数据比例尺度数据定性地理数据: 有序数据二元数据名义尺度数据19. 频率分析:两种检验方法:频率分布直方图、正态 QQplot 分布图。20. 离群值分析:分为全局离群值(对于数据中的所有点具有很高或很低值的观测样点)和 局部离群值(数据中对于其周围的点的值具有很高或很低观测值的样点) 。21. 离群值分析方法: 直方图识别全局离群值变异函数云图识别离群值 Voronoi 图识别 离群值22. 全局趋势分析:指从总体上分析数据集在空间某一特定方向上的变化趋势。23. 空间自相关性分析:空间上距离较近的采集点差异性会较小而相似性较大;距离较远的 点差异性较大而相似性较小。24. 各向异性分析:

7、25. 区域化变量的概念: 以空间点 x 的三个直角坐标 xu,xv,xw 为自变量的随机场 Z(xu,xv,xw)=Z(x),称为区域化变量。26. 区域化变量性质:随机性和结构性空间局限性不同程度的空间连续性不同类型 的各向异性27. 协方差函数(会计算)性质: 先验方差不能小于零是一个偶函数协方差绝对值小 于等于先验方差 C(R )=0协方差函数矩阵必须是非负定矩阵。28. 变异函数性质:24)变异函数性质:h=0时,变异函数为零是一个偶函数研究对象的变异函数只能大于或等于零丫(R)=C(0)构成的变异函数矩阵必须是条件非负定矩阵。29. 变异函数的功能:变异函数通过“变程”反映变量的影

8、响范围;“基台值”反映区域化变量在研究范围内变异的强度不同方向上的变异函数图可反映区域化变量的各向异性 块金常数 C0 的大小可反映区域化变量的随机性大小变异函数在原点处的性状可反映区域 化变量不同程度的空间连续性30. 二阶平稳假设(为了统计推断的需要,在线性地统计学研究中,一般只需要假设其一、而、二阶矩阵存在且平稳,即二阶平稳假设)条件:研究区域内Z (x)的数学期望存在;的协方差函数存在且平稳。31. 内蕴假设:基本思想:只考虑区域化变量的增量而不考虑变量本身。当区域化变量Z(x)的增量Z(x)-Z(x+h)满足下列两个条件时(区域化变量 Z(x)的增量的数学期望为 0Z(x)的增 量的

9、方差函数对于任意 x和h存在,且平稳),则该区域化变量满足内蕴假设。32. 变异函数的理论模型:有基台值模型:纯块金效应模型球状模型指数模型高 斯模型线性有基台值模型。 无基台值模型: 线性无基台值模型幂函数模型对数模 型孔穴效应模型(可有有基台或无基台模型)33. 结构分析:构造一个变异函数模型对于全部有效结构信息作定量化的概括,以表征区域 化变量的主要特征。结构分析的主要方法是套合结构。34. 套合结构:把分别出现在不同距离h上和(或)不同方向a上同时起作用的变异性组合起来。可以表示为多个变异函数之和, 每一个变异函数代表一个方向一种特定尺度上的变异 性。35. 估计方差的概念:36. 单

10、一方向的套合(计算) :每一个变异函数代表同一方向上一种特定尺度的变异,并可以 用不同的变异函数理论模型来拟合,即单一方向的套合结构。37. 各向异性的种类:几何异向性(当区域化变量在不同方向上表现出变异程度相同而连续性不同时称为几何异向性);带状异向性(当区域化变量在不同方向上变异性差异不能 用简单几何变换得到时,就称为带状异向性。 )。38. 变异函数理论模型的最优拟合:概念:根据实验变异函数值,选择合适的理论模型来拟 合一条最优的理论变异函数曲线。步骤: 确定变异函数模型形态 (或确定曲线类型) 模 型参数的最优估计模型拟合评价。39. 结构分析的步骤: 区域化变量选择数据的获取与审议数

11、据的统计分析变异函数 的计算变异函数的结构分析各向异性理论变异函数模型的最优拟合及检验变异 函数理论模型的专业分析40. 克里格法概念:又称为空间局部估计或空间局部插值法,克立格法是建立在变异函数理论及结构分析基础上,在有限区域内对区域化变量的取值进行线性无偏最优估计的一种方法。41. 克里格法种类:简单克立格法普通克立格法泛克立格法对数正态克立格法指示克立格法概率克立格析取克立格法协同克立格法42. 泛克里格法:在漂移的形式EZ(x)=m(x),和非平稳随机函数 Z(x)的协方差函数 C(h)或变异函数丫 (h)为已知的条件下,一种考虑到有漂移的无偏线性估计量的地统计学方法,这种 方法属于线性非平稳地统计学范畴。43漂移:非平稳区域化变量Z(x)的数学期望,在任一点x上的漂移就是该点上区域化变量Z(x)的数学期望。44涨落:是一个数学期望为 0的区域化变量,可认为涨落是围绕漂移m(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论