2007年高考江西卷数学文科试卷含答案.doc_第1页
2007年高考江西卷数学文科试卷含答案.doc_第2页
2007年高考江西卷数学文科试卷含答案.doc_第3页
2007年高考江西卷数学文科试卷含答案.doc_第4页
2007年高考江西卷数学文科试卷含答案.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2007年普通高等学校招生全国统一考试(江西卷)文科数学本试卷分第I卷(选择题)和第II卷(非选择题)两部分.第 I卷1至2页,第II卷 3至4页,共150分.考生注意:1 .答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上 粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2 .第I卷每小题选出答案后,用 2 B铅笔把答题卡上对应题目的答案标号涂黑,如需改动, 用橡皮擦干净后,再选涂其他答案标号.第 II卷用黑色墨水签字笔在答题卡上书写作答, 若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷、答题卡一并收回. 参考公式:如果事件A

2、, B互斥,那么球的表面积公式P(A B) =P(A) P(B)S=4tR2如果事件A, B相互独立,那么P(ALB)= P(A)_P(B)其中R表示球的半径球的体积公式如果事件A在一次试验中发的概率是P,那么V="3n次独立重复试验中恰好发生k次的概率其中R表示球的半径Pn(k) =C:Pk(1-P)n*60分.在每小题给出的四个选项中,只一、选择题:本大题共 12小题,每小题5分,共 有一项是符合题目要求的.1.若集合 M = 0,1 , I = 01,2,3,4,5,则 eMB. :2,3,4,5)C. ; 0,2,3,4,51D.11,2,3,4 52.函数y =5tan(2

3、x+1)的最小正周期为冗D.B .21 x ,、3.函数 f(x) = lg一的定义域为(x -4A. (1,4)B. 1,4)(-0%1)U(4,+8)D. (-0o,1U (4,+ 9)4 .若 tanu=3, tan B =4 ,则 tang - 口)等于()3c. 3A. -3292. .115 .设(x + 1)(2x+1) =ao+a(x+2)+a2(x+2) +| +an(x + 2),则 ao +a +a2 +为的值为()A. -2C. 1D. 217.(本小题满分12分)6 .一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取

4、2次,则取得两个球的编号和不小于A. !_321B . 64C .3215的概率为(3)3D.647.连接抛物线X=4y的焦点F与点M (1,0)所得的线段与抛物线交于点A ,设点O为坐标原点,则三角形A. -1 、立OAM的面积为(B. 3-521 .2D.,222A .2A. sin x : x花3sin x : x花9.四面体ABCD的外接球球心在CD上,且 CD =2AD = .3在外接球面上两点A B间的球面距离是(, 冗A. 一6)花B .322t3、-,、3_ 210.设 p: f (x) =x +2x+ mx +1在(一8, +°o)内单调递增,4口,q:m)一,则

5、p是q的3B .必要不充分条件D.既不充分也不必要条件他们按照各自的爱好选择了形状不同、内空高度相等、盛满酒后他们约定:先各自饮杯中酒的一半.设剩余酒的杯口( )A.充分不必要条件C.充分必要条件11.四位好朋友在一次聚会上, 半径相等的圆口酒杯,如图所示,h2 ,h3, h4,则它们的大小关系正确的是(A. h2 h1 h4hih2h3c. h3h2 h4D. h2h4 h1.一兀 .一 8.若0 <x < 一,则下列命题正确的是(22d一一 xy 1 、一一12 .设椭圆- +与=1代b A0)的离心率为e =,右焦点为F(c,0),方程ab22ax +bx c=0的两个实根分

6、别为 Xi和X2,则点P(x, X2)()A.必在圆x2+y2=2上B.必在圆x2+y2=2外C.必在圆x2+y2=2内D.以上三种情形都有可能2007年普通高等学校招生全国统一考试(江西卷)文科数学第II卷注意事项:第II卷2页,须要黑色墨水签字笔在答题卡上书写作答,若在试卷题上作答,答案无效.二、填空题:本大题共 4小题,每小题4分,共16分.请把答案填在答题卡上.13 .在平面直角坐标系中,正方形 OABC的对角线OB的两端点分别为 O(0,0), B(1,1),则 abUac =.14 .已知等差数列an的前n项和为Sn,若62=21,则a2+as + a8+a1 =15 .已知函数y

7、=f(x)存在反函数y=f,(x),若函数y = f (1十x)的图象经过点(31),则函数y = f "(x)的图象必经过点16 .如图,正方体 AC1的棱长为1,过点作平面 A1BD的垂线,垂足为点 H .有下列四个命题A.点H是ABD的垂心B . AH垂直平面CB1 D1C.二面角 CB1D1C1 的正切值为 72IXA1二二二-7)BiC13 1D .点H到平面A1B1C1D1的距离为一4其中真命题的代号是 .(写出所有真命题的代号)三、解答题:本大题共 6小题,共74分.解答应写出文字说明,证明过程或演算步骤.cx 1已知函数f(x)= x2/1(0 :二 x :: c)(

8、c w x <1)满足 f(c2) =98(1)求常数c的值;(2)解不等式f(x) -2818.(本小题满分12分)如图,函数y = 2cos侬x+8)(xw R, «>0,0<9<-)的图象与y轴相交于点(0,/3),且该函数的最小正周期为 n . (1)求6和®的值;一, 冗(2)已知点A ,0 1Op,点P是该函数图象上一点, 点Q(x0, y0)是PA的中点,当出当,x°w冗时,求x0的值.2(1)(2)20.(本小题满分12分)右图是一个直三棱柱(以 AB1C1为底面)被一平面所截得到的几何体,截面为AB1=B1c1=1, 2A

9、Bic1=90,,AA1=4BB1=2, CC1=3.(1)设点。是AB的中点,证明: OC /平面AB1cl ;(2)求AB与平面AAC 1c所成的角的大小;(3)21.求此几何体的体积.(本小题满分12分)设6口为等比数列,a1 =1 ,19.(本小题满分12分)栽培甲、乙两种果树,先要培育成苗 ,然后再进行移栽.已知甲、乙两种果树成苗的概率分 别为0.6, 0.5,移栽后成活.的概率分别为0.7, 0.9.求甲、乙两种果树至少有一种果树成苗的概率; 求恰好有一种果树能培育成苗 且移栽成活的概率.(1)求最小的自然数,、11(2)求和:T2n =一a a2a3a2n22.(本小题满分14分

10、)设动点P到点F1( 1,0)和F2(1,0)的距离分别为d1d2/ F1PF2 =28 ,且存在常数一. . 2 .K(0 <% <1),使得 d1d2sin 日=九.(1)证明:动点 程;P的轨迹C为双曲线,并求出C的方(2)如图,过点F2的直线与双曲线C的右支交于A B两点.问:是否存在九,使 F1AB是以点B为直角顶点的等腰直角三角形?若存在,求出九的值;若不存在,说明理由.2007年普通高等学校招生全国统一考试(江西文)参考答案一、选择题1. B 2. B10. C 11 . A二、填空题3. A12.4. DC5. A 6. D7. B 8.B 9. C13. 114.

11、 715.(1,4)16. A, B, C三、解答题17.解:(1)因为0 <C <1,所以99 A由 f (c2)=一,即 c3 81:8(2)由(1)得 f(x) = «x 1, 1 x : 一 22 sx +1& x <1由f(x),得,8、一 1 .一当0 <x父一时,解得2.1.一当一& X <1时,解得258,所以f(x) >立+1的解集为8:二 X :二 5818.解:y = J3代入函数 y = 2cos(&x +0)中得 cosB一 '.- 九- 冗因为0 W日W 2 ,所以日=6.由已知T =冗,

12、且8>0,得8=2. T 兀(2)因为点 A,0 j, Q(xo, yo)是 PA 的中点,yo =.22口 冗,且一w x0 w 冗,所以 cos 4x02所以点P的坐标为:2x0(,、/3 j.又因为点P在y =2cos,2x +- i的图象上67几/5兀119几一 < 4x0 < ,从而得4m -5九11几廿4 5九13九或 4x0 -一二一或 x0=2419.解:分别记甲、乙两种果树成苗为事件A1,A2;分别记甲、乙两种果树苗移栽成活为事件 B1, B2, P(A)=0.6, P(A2)=0.5, P(B)=0.7, P(B2) = 0.9.(1)甲、乙两种果树至少有

13、一种成苗的概率为p(a1 +A2) =1-P(ALA) =1 -0.4 父 0.5 = 0.8;(2)解法一:分别记两种果树培育成苗且移栽成活为事件A B,则 P(A) =P(AB1) =0.42 , P(B) = P(A2B2) =0.45 .恰好有一种果树培育成苗且移栽成活的概率为P(AB +AB) =0.42 父 0.55+ 0.58父0.45 =0.492 .解法二:恰好有一种果树栽培成活的概率为P(A1B1A +A1B1A2B2 +AAB2 +AA2BX) =0.492.20.解法一:(1)证明:作 OD / AA1 交 AB1 于 D ,连 C1D .DR则 OD / BB1 /

14、CC1 , 因为。是AB的中点,一 1 一 一所以 OD =-(AA1 +BB)=3=CC1.则ODCiC是平行四边形,因此有 OC / CiD ,C1D u平面C1B1Al ,且OC0平面C1BA则 OC / 面 ABiCi .(2)解:如图,过 B作截面BA2C2 /面ABQ1,分别交AA , CC1于A2 , C2,作 BH ± A2c2于 H ,因为平面A2BC2,平面AACiC ,则BH,面AACiC .连结AH ,则/ BAH就是AB与面AAC1c所成的角.J2 因为BH =上,2BH 10AB =。5 , 所以 sin / BAH =ABi0AB与面 AACiC 所成的

15、角为 Z BAH =arcsin10 .,AA2C2cUBH -10(3)因为BH =也,所以VBqA,Cc 2 bB AA2 C2 c1L2(1 2)/ =i.VA B1cl 32BC2 = S*A A B1cl LBBi =212所求几何体的体积为 V=VbhaCC WABC人BCB AA2 c2 CA| BC -A2 BC 2解法二:(i)证明:如图,以Bi为原点建立空间直角坐标系,则A(0i,4)B(0,0,2),C(iQ,3), 口1因为。是AB的中点,所以O.0,32o?j;-22)易知,n =(0Q,i)是平面AB1cl的一个法向量.由 OCl_n =0 且 OCS 平面 ABi

16、Ci知 OC / 平面 ABiCi .(2)设AB与面AAC1C所成的角为6 .求得 蒜=(0,0,4) , ACi=(1,1,0).设m=(x, y, z)是平面AA1C1c的一个法向量,则由=0A1C1m=0z = 0得/ ,x-y = 02.(d1 -d2) = 4 -4 '取 x = y=1 得:m=(1,1Q).又因为AB =(0,-1,-2)所以,cos < m ,m_AB710AB = r =,10m|_AB1010所以AB与面AAC1C所成的角为arcsin. 1010(3)同解法21 .解:(1)由已知条件得a1因为36 <2007 <37,所以,使

17、an > 2007成立的最小自然数 n = 8.(2)因为T2n12 3 I ''2n1 3 323332n43T2332334-4 HI342n -1 2n32n 432n4111 + 得:一T2n =1 +-,-3+ I33 32331 2n32n32n33L32n -3 -8n4132 n所以T2nc2n 23一 9 -'24n1632n.22.解:(1)在PF1F2 中,F1F2 =24 =d12 d; -2d1d2 cos2? - (d1 -d2)2 4d1d2sin2 di d2 =2,仁(小于2的常数)故动点P的轨迹C是以F1, F2为焦点,实轴长2

18、a = 2 Ji 九的双曲线.22方程为_x_y_ =i. i - (2)方法一:在 zXAFiB 中,设 AFi =di , AF?=d2, BF1=d3, BF2 = d4.假设AAFiB为等腰直角三角形,则d1 -d2 =2a| d3 -d4 =2a|© d3 =d4 +d2川di =岳3川d3d4 sin2 =1|.4由与得d2 =2a ,d =4a则 d3 =2% 2ad4 =d3 - 2a =2(应-i)a由得d3d4 =2人, 4、2( .2 -i)a2 =2,(8 4 收)(i 九)=2九,i)i7i2 -2 . 2故存在九=满足题设条件.i7方法二:(i)设AAFiB为等腰直角三角形,依题设可得AFi LAF2Sin2,= 1|BFi BF2 5n2 4 =九f|AFiAF2 =二IBF1L BF2 =2、2、21 " 一2 4cos42' .1,i . 兀j-1 , 一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论