单相交流调压电路_第1页
单相交流调压电路_第2页
单相交流调压电路_第3页
单相交流调压电路_第4页
单相交流调压电路_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、   电力电子课程设计 单相交流调压电路学 院:工程学院班 级:12电气2班 姓 名: 2015年6月摘 要本次课程设计,先明确了实验的要求和设计目的设计一个单相交流调压电路。然后根据要求进行电路设计,包括主电路、触发电路。排版等等。设计并发现、解决相应的问题。之后对电路进行了实验仿真,通过仿真实验,再发现其中的问题和不足,进行更改和完善。然后确定实验所需的元器件。确定之后,进行器件的购买,之后进行电路板实物的焊接。焊接后要进行调试。发现和排除错误,调试时,发现了问题,然后经过实验仪器的排错,线路元器件的排错,发现了两处问题,更改之后就正常了。接着是对波形的观察和数据的记录

2、。完成这些后,对数据进行处理,整理结论。最后是我们的心得体会和收获。以及完成报告总结。关键词 主电路 触发电路 波形 负载电压 调压 目 录一、设计任务及目的 4 (一)设计要求任务 4(二)设计目的 4二、实验器件、设备及所用软件 4(一)实验材料的选择 5(二) 实验所需设备 5(三)所用软件 5三、电路设计方案的设计和选择 5(一)方案的确立 5(二)实验电路的设计 61、触发电路的设计 61.1 触发信号的种类 61.2 触发电路的设计 62、主电路的设计 9四、完整电路图及实物图 11五、实验波形及数据 12 (一)=30°时 12(二)=60°时 13(三)=9

3、0°时 15(四)=120时 17六、实验数据处理 19七、结论总结 20八、心得体会 21参考文献 22单相交流调压电路前 言电力电子线路的基本形式之一,即交流交流变换电路,它是将一种形式的交流电能变换成另一种形式交流电能电路。在进行交流交流变换时,可以改变交流电的电压、电流、频率或相位等。用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化

4、结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的 输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低。一、 设计任务及目的(一)设计要求任务1. 设计一个单相交流调压电路。输入电压为36V交流,输出交流电压可变,带纯电阻性负载。2. 提出电路设计方案,比较不同的方案并选定方案。3. 完成电路的设计和主要元器件的选择及说明。4. 进行实验仿真及电路板的焊接和测试性能。5. 分析实验数据,得出结论。(二)设计目的 使学生熟悉各种电力电子器件的特性和使用方法;掌握各种电力电子变流电路的结构、工作原理、控制方法、设计计算方法及实验技能;熟悉各种电

5、力电子变流装置的应用范围及技术经济指标。训练学生综合运用学过的变流电路原理的基础知识,通过资料查找、方案选择、电路设计,进一步加深对变流电路基本理论的理解,提高动手动脑的基本应用技能。二、 实验器件、设备及所用软件(一)实验材料的选择根据我们的设计需要,确定如下的器材:表1 实验所需元件表序号元件名型号/规格数量备注1万用板19*15cm22芯片插座18脚3整流桥DB10714二极管1N400745晶闸管MCR 100-62代替BT169B6三极管2N22221NPN型7三极管2N39061PNP型8电容0.47F19可调电位器20k110隔离变压器211电阻1k111k*3+(1+1)k*4

6、12电阻4.3k1(二) 实验所需设备电烙铁 焊锡 导线 万用表 脉冲示波器 36V交流电源(三)所用软件 Multisim12.0 三、电路设计方案的设计和选择(一)方案的确立题目要求为:输入电压为36V交流,输出交流电压可变,带纯电阻性负载。所以根据上课所学知识和查阅相关资料,我们初步选定了方案:如图,将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。图1 电阻负载单相交流调压电路 (二)实验电路的设计1、触发电路的设计1.1 触发信号的种类 晶闸管有关断到开通,必须具备两个外部条件:第一是承受足够的正向电压;第二是门极与阴极之间加

7、一适当的正向电压、电流信号。门极触发信号有直流信号、交流信号和脉冲信号三种基本形式。 (1) 直流信号 在晶闸管加适当的阳极正向电压的情况下,在晶闸管门极与阴极间加适当的直流电压,则晶闸管将被触发导通。这种方式实际应用中最少。因为晶闸管在其导通后就不需要门极信号继续存在。若采用直流触发信号将使晶闸管门极损耗增加,有可能超过门极功耗:在晶闸管反向电压时,门极直流电压将使反向漏电流增加,也有可能造成晶闸管的损耗。 (2) 交流信号 在晶闸管门极与阴极间加入交流电压,当交流电压uc=ut时,晶闸管导通,ut是保证晶闸管可靠触发所需的最小门极电压值,可改变触发延迟角 。这种触发形式也存在许多的缺点,如

8、:在温度变化和交流电压幅值波动时,触发延迟角不稳定,可通过交流电压uo值来调节,调节的变化范围较小。(3) 脉冲信号  在晶闸管门极触发电路中使用脉冲信号,不仅便于控制脉冲出现时刻,降低晶闸管门极功耗,还可以通过变压器的双绕组或多绕组输出,实现信号的隔离输出。因此,触发信号多采用脉冲形式。1.2 触发电路的设计方案一 采用KC05移相触发器进行触发电路的设计。KCO5可控硅移相触发器适用于双向可控硅或两只反向并联可控硅的交流相位控制。KC05触发芯片具有锯齿波形好,移相范围宽,控制方式简单,易于集中控制,有失交保护,输出电流大等优点,是交流调光,调压的理想电路。KC05电路也适用于作

9、半控或全控桥式线路的相位控制。同步电压由KC05的15、16脚输入,在TP1点可以观测到锯齿波,RP1电位器调节锯齿波的斜率,Rp2电位器调节移相角度,触发脉冲从第9脚,经脉冲变压器输出。调节电位器RP1,观察锯齿波斜率是否变化,调节RP2,可以观察输出脉冲的移相范围如何变化单相交流调压触发电路原理图如下图。图2  单相交流调压触发电路原理图方案二 采用KJ004可控硅移相触发电路。该电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。KJ004器件输出两路相差180度的移项脉冲,可以方便地构成全控桥式触发器线路。该电路具有输出负载能力大,移相性好,正负半周脉冲相位均

10、衡性好、移相范围宽、对同步电压要求低,有脉冲列调制输出端等功能与特点。下面是KJ004的应用实例。该电路由同步检测电路、锯齿波形成电路、偏移电压、移电压综合比较放大电路和功相率放大电路四部分组成。 电路原理见下图:锯齿波的斜率决定于外接R6、RW1流出的充电电流和积分C1的数值。对不同的移项控制V1,只有改变R1、R2的比例,调节相应的偏移VP。同时调整锯齿波斜率电位器RW1,可以使不同的移相控制电压获得整个范围。触发电路为正极性型,即移相电压增加,导通角增大。R7和C2形成微分电路,改变R7和C2的值,可获得不同的脉宽输出。KJ004的同步电压为任意值。以下是KJ004的典型接线图

11、。图3 KJ004构成的触发电路方案三 采用普通三极管触发的单相晶闸管电路,两个三极管组成互补型放大器以构成晶闸管VT1的触发电路。36V电源先通过整流桥整流输出全波脉动电压,此电压经R1,R6,R8向电容C充电,使Q2发射极电压不断升高,当高于其基极电压时,Q1,Q2即导通,晶闸管门极获得触发脉冲,D9导通。此时,电容C通过Q1,Q2及R4放电,正电源又重新通过R1,R6,R8向其充电。所以,通过调节电位器的阻值可以改变Q2发射极输出脉冲时间向后移动或者向前移,即改变晶闸管的导通角,即实现触发。具体触发电路如下图。 图4 三极管互补触发电路以上是我们的三种触发电路图,我们本来的选择是以方案一

12、为主。方案一的应用比较广泛,在实验室里用的就是方案一的电路。但是即使是用了集成的芯片KC05,这个电路图也并不简单,还要用到直流电源,较麻烦。最重要的是,我们在实际的元器件购买中,找了很多家店都没有卖KC05和KJ004的,考虑到时间的问题以及经费。我们放弃了方案一。而方案三的触发电路经过我们的仿真实验调试,能够很好的达到要求。而且电路图又不麻烦,又是我们自己设计的,原理掌握也很熟悉。于是,最终我们的触发电路选择了方案三。2、主电路的设计所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。交流调压电路广泛用于灯光控制及异步

13、电动机的软启动,也用于异步电动机调速。此外,在高电压小电流或低电压流之流电源中,也常采用交流调压电路调节变压器一次电压。本次课程设计主要是研究单相交流调压电路的设计。下图就电阻负载单相交流调压电路进行分析。图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角 进行控制就可以调节输出电压。正、负半周起始时刻(a=0),均为电压过零时刻。在wt=aw时,对VT1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在wt=时,电 源电压过零,因电阻性负载,电流也为零,VT1自然关断。在wt=+a

14、+时,对VT2施加触发脉冲,当VT2正向偏置而导通时,负载电压波形与电源电压波形相同;在wt=2时,电源电压过零,VT2自然关断。当电源电压反向过零时,由于反电动势负载阻止电流变化,故电流不能立即为零,此时晶闸管导通角的大小,不但与控制角a有关,而且与负载阻抗角有关。两只晶闸管门极的起始控制点分别定在电源电压每个半周的起始点。稳态时,正负半周的相等,负载电压波形是电源电压波形的一部分,负载电流(电源电流)和负载电压的波形相似。  图5 主电路图6 单相交流电压电路波形四、 完整电路图及实物图 图7 完整仿真电路图8 实物电路板五、 实验波形及数据(一)=30°时图9 实际3

15、0°时触发和整流波形及负载电压图10 仿真30°触发和整流波形及负载电压图11 实际30°时负载电压波形图12 仿真30°时负载电压波形(二)=60°时图13 实际大约60°时触发和整流波形及负载电压图14 仿真60°时触发和整流波形及负载电压图15 实际约60°时负载电压波形图16 仿真60°时负载电压波形(三)=90°时图17 实际大约90°时触发和整流波形及负载电压图18 仿真90°时触发和整流波形及负载电压图19 实际约90°时负载电压波形图20 仿真90&

16、#176;时负载电压波形(四)=120°时图21 实际大约120°时触发和整流波形及负载电压图22 仿真120°时触发和整流波形及负载电压图23 实际约120°时 负载电压波形图24 仿真120°时负载电压波形 六、 实验数据处理(一)负载电压有效值故移相范围为0。=0时,输出电压为最大, U0=U2。随着的增大,U0降低,当=时,U0=0。 = 在我们的实验中U2的值为36V,所以取几个特殊值计算的结果如下表2 负载电压的计算值、实际值角度 U2(V)U0计算值(V)U0实验值(V)U0仿真值(V)30°36 35.533.834.

17、560°3632.327.131.490°3625.521.424.4120°3615.913.313.4 由上表,我们用万用表测出实际值和计算值是有一定的误差的,这是因为在实际中示波器的观察角度无法确定的很准确,所以会有一定的误差。而且空气中有一些谐波对我们观察也会有一些的影响。不过总体上实验结果还是正确可信的。所以通过控制角的大小,单相交流调压电路能够得到很好的调压结果。(二)负载电流有效值晶闸管电流有效值:(三)功率因数=0时, 功率因数=1, 增大,输入电流滞后于电压且畸变,降低。七、 结论总结通过设计可以总结出,的移相范围为0。=0时,相当于晶闸管一直导

18、通,输出电压为最大值,U。=U1。随着的增大,U。逐渐减小。知道=时,U。=0。此外,=0时,功率因数=1,随着的增大,输入电流滞后于电压且发生畸变,也逐渐降低。完成了题目单相交流调压电路,输入电压为36V交流,输出交流电压可变,带纯电阻性负载的电路设计,很好地实现了相应的功能。八、 心得体会 在这次的课程设计中,我们历经一个多星期,最终完成了全部内容。其中的每一步都令我们记忆深刻。一次课程设计让我们学到了很多知识,包括对课本内容加深的理解和其他知识的扩充。每个人都有了自己的体会和看法。:在这次课程设计中,我负责电路的设计及调试工作,最难的在触发电路的设计上以及各电力电子器件型号选择,所以认真

19、了解各型号晶闸管相应参数及性能是这次课程设计的关键。根据选择的管子和主电路设计触发电路,比如在单相交流调压设计中,两个管子分别在正负半周期触发并且相差180度,需要两组触发电路。但是根据晶闸管的导通特性,用整流桥整流后让触发电路在正负半周期都产生脉冲,将一组脉冲同时输给两个管子也可以达到两组触发电路的效果,这样就简化了电路。同时在调试过程中,除了对设计电路的熟悉和各个关键点波形的了解外,还需要有一定的技巧和检测电路的思维,就是逆向检测,从后面的电路往电源侧逐个检测,从而找出原因所在也为调试带来很大的方便。:开始的时候觉得这次课程设计是比较简单的,几个题目的主电路都是很简单的。实际实现过程中遇到了一些问题。才意识到这次课程设计没有想象中那么简单。其实问题主要在于触发电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论