(推荐)DOE简介(经典方法)_第1页
(推荐)DOE简介(经典方法)_第2页
(推荐)DOE简介(经典方法)_第3页
(推荐)DOE简介(经典方法)_第4页
(推荐)DOE简介(经典方法)_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、(推荐推荐)doe简介简介(经典方法经典方法)试验设计(design of experiments)简介3确认偏差来源确认偏差来源:探测性分析探测性分析取得突破的蓝图优化输出变量优化输出变量控制控制 x和和 监控监控 y确立长期确立长期质量管理质量管理控制控制明确项目定义明确项目定义确认输入及确认输入及输出指标输出指标分析测量系统分析测量系统确定工艺能力确定工艺能力测量测量确认偏差来源确认偏差来源:统计性分析统计性分析确认偏差来源确认偏差来源:方差分析方差分析规划试验设计规划试验设计分析分析筛选关键筛选关键输入变量输入变量 (doe) 找寻交互作用找寻交互作用( doe)确定确定 y=f (x

2、)改进改进6 sigma 概论概论项目管理项目管理计算机应用计算机应用基础统计学基础统计学确定确定4改进阶段: 可能取得的成果q项目回顾和第一,二次课程其余成果q筛选关键输入变量 m设计一个试验m部分因子试验q找寻交互作用 (doe) 及 定义 y = f (x)m2k 因子试验m2k: 中心点及分区试验m为 doe选定样本尺寸m全因子试验m优化试验简介q完成阶段总结m结论, 问题和下阶段任务5y=f(x)试验 定义 试验是一个或一系列有目的有目的地改变流程或系统的输入变量输入变量以观察识别输出应变量输出应变量随之改变的实验douglas c. montgomery那些自变量那些自变量x显著的

3、影响着显著的影响着y?这些自变量这些自变量x取什么值时将会使取什么值时将会使y达到最佳值达到最佳值?6噪音输入变量噪音输入变量(连续连续)流程或系统的一般模型可控输入变量可控输入变量流程流程关键流程关键流程输出指标输出指标噪音输入变量噪音输入变量(离散离散)?7试验的目的q确定 m那些输入对输出影响最大(确定关键输入变量)m什么样的输入设置能产生理想的输出结果m怎样设置影响最大的输入水平以减少输出变量的变化范围m怎样设置可控输入水平使得不能控制的输入变量对输出的影响减到最小q找出定义流程的公式 (y=f(x) 以优化流程8试验设计中的基本术语q因子 (可控因子,非可控因子) xq水平: 为了研

4、究因子对响应的影响,需要用到因子的两个或更多的不同的取值,这些取值称为因子的水平(level)或设置(setting).q处理: 按照设定因子水平的组合,我们就能进行一次试验,可以获得一次响应变量的观测值,也可以称为一次“试验”(trial, experimental run),也称为“一次运行”(run).q试验单元(experiment unit):对象,材料或制品等载体,处理(试验)应用其上的最小单位q试验环境:以已知或未知的方式影响试验结果的周围环境q模型:可控因子(x1,x2,xn), 响应变量(y) , f 某个确定的函数关系qy= f ( x1, x2, x3,. xk) + e

5、rror (误差)q主效应: 某因子处于不同水平时响应变量的差异q交互效应: 如果因子a的效应依赖于因子b所处的水平时,我们称a与b之间有交互作用.qofat法(one-factor-at-a-time):在各因子的变化范围每次改变一个因子的水平以选定各因子的最佳水平。.9试验设计的基本原则q重复试验(replication) 一个处理施加于多个试验单元。我们一定要进行不同单元的重复(replicate),而不能仅进行同单元的重复(repetition):要重做试验,而不能仅重复观测或重复取样。q随机化(randomization):用完全随机的方式安排各次试验的顺序和或所用的试验单元。防止那

6、些试验者未知的但可能会对响应变量产生的某种系统的影响。q划分区间(blocking):按照某种方式把各个试验单元区分成组,每组内保证差异较小,使他们具有同质齐性(homogeneous),则我们可以在很大程度上消除由于较大试验误差所带来的分析上的不利影响。如果分区组有效,则这种方法在分析时,可以将区组内与区组间的差异分离出来,这样就能大大减少可能存在的未知变量的系统影响。q能划分区组者则划分取组,不能划分区组者则随机化。qblock what you can and randomize what you cannot10q打一轮高尔夫球的输出变量是什么?m分数, 越低越好 (击球及推杆数少)q

7、可控制的输入变量是什么?m球及球杆的类型m带着球杆步行或开车运送m玩球时喝掉的啤酒瓶数q不可控制的输入变量是什么?m击球的前后一致性m天气 风, 雨, 太阳, 温度设想打高尔夫球是一个试验?11“最佳猜测” 法q工业界最常用q程序m选择 “最佳估计” 的因子组合qping 牌球杆, titleist 牌球, 开车, 四瓶啤酒m进行一次试验 (打一轮)m输出结果与预期值比较 (分数: 94 不太好)m如结果不理想, 将其中一个因子的水平改变 重新试验m如需要重复试验q缺点m如第一次估计错误, 需要更多次试验 低效率且时间长m如第一次估计可以接受, 试验会停止下来, “最佳”方案可能永远找不到12

8、ofat法 每次一个因子(one-factor-at-a-time)q常用于对所研究流程了解有限的情况q程序m选择一个因子水平的组合作基线m在各因子的变化范围每次改变一个因子的水平m选定各因子的最佳水平q对啤酒及走或开车的组合:?transbeersridewalk0484.585.586.587.588.5score_2main effects plot - data means for score_213ofat的缺点q主要缺点 ofat 未能考虑交互作用m交互作用 在另一个因子的不同水平, 一个因子产生的效果不相同q另一个缺点mofat 总是比统计学试验设计效率差ridewalk4092

9、9190898887868584beerstransmeaninteraction plot - data means for score_214解决方案-因子试验设计q处理多个因子的正确方法是进行因子因子 试验m即 doe (design of experiments)q因子试验m各因子一起改变其水平而不是一次一个m试验设计是进行一整套试验且所有试验完成后才进行分析15因子试验 实例q考虑高球例子的两个因子: 啤酒和 开车q一个因子试验会设置如下:m各因子在另一个因子的各水平改变其水平qi如加上第三个因子, 球的类型 (titleist 或 pinnacle), 设计会变成:车啤酒wr04车

10、啤酒wr04球tpt?16因子试验 练习q把前例的试验设计方案填如表中m车 q低水平: 走 q高水平: 开车m啤酒 q低水平: 0 q高水平: 4mballsq低水平: titleist q高水平: pingrun no carts beers balls1234567817试验 通用处方定义定义q陈述实际问题q陈述试验目的q陈述因变量(y)q选择输入变量1.选择输入因子的水平实施实施q选择试验设计方案及样本尺寸q进行试验并采集数据q分析数据 q得到统计学及实际答案6.把结论转化为实际问题的方案18试验目的q试验目的和项目目的不同m一个试验通常不够m一系列试验通常导致优化试验qdoe 与项目目

11、的有关m进行试验是为了达到项目目的m进行试验不只是满足试验者的好奇心.19选择输出变量q试验因变量的例子:m电镀流程 厚度, 均匀度, 纯度m开发票流程 正确发票数, 周期时间q高球例子:m主要因变量: 总杆数m其它可能因变量: 距发球点及球道中心的距离 (球杆及球的类型试验)20选择输入因子q输入因子 在试验中要研究其对因变量影响的流程输入变量之一m定量 (连续) 输入: 温度,压力,时间等.m定性 (离散) 输入: 操作员, 机器, 工厂, 批次, 触媒等.q应选那些因子?m用6 sigma 工具! q流程图, c & e 矩阵, fmeaq多变量分析, 假设检验21选择输入因子q高球实例

12、:因子: 球杆类型 (商标)球的类型 (商标)行走或开车啤酒瓶数?22选择各因子的水平q水平: 输入变量的值(设置)m例如: 如温度是输入 q水平: 125, 150, 175m例如: 如操作员是输入qmary, beth, tom, saundersq在高球例子中:因子因子水平水平球杆ping, titleist球top flite, titleist交通工具走, 车啤酒0, 423选择各因子的水平q选择各因子水平应考虑:m我希望看到多大的变化?m偏差的正常范围是多少?m我能改变多少但仍安全?m机器/工艺的限度在哪里?m本试验的类型是什么?q筛选 用跨度大的水平q优化 根据以前试验的结果选用

13、适当的水平.q几个水平?m依资源及试验目的而定m两个水平很方便,如随后的章节所示24选择试验设计方案q简单的比较型试验m两个均值的检验q1- 和 2-样本 t-检验q配对 t-检验m1- 和 2-方差检验m1- 和 2-比例检验q单因子试验:m方差分析q按统计学设计的试验 doe25做试验的一些窍门q利用问题中非统计学的部分m这对正确选择因子和水平极有价值m应用统计学不能代替对问题的思考q尽可能保证设计及分析简便mkiss keep it simple, stupid!(简单到愚蠢!)m复杂的试验和分析常会有错误q明了统计学重要性与实际重要性的区别m流程变化会导致统计学显著差别,但并不意味着该

14、差别是重要的q试验本身是重复性的m我们的知识与日俱增. 应期望用数个试验才能获得最佳工艺.m一般指导方针: 在第一个试验中使用不超过25% 的资源.26总结报告q一定为doe写一个专门的报告mdoe通常涉及多人且耗费大量资源m大多数人希望在项目结束前了解得到的结果怎样m报告/汇报doe结果能帮助教导更多人关于doe 的原理. 记住有关临界数量及文化变革的教诲qdoeoutline.doc能帮助你作doe总结报告的大纲doeoutline.doc27有效进行试验的障碍问题不清问题不清目的不清目的不清脑力风暴不足脑力风暴不足试验结果不清试验结果不清doe 太贵太贵doe 时间太长时间太长对对 do

15、e策略了解不够策略了解不够对对 doe工具了解不够工具了解不够初期信心不足初期信心不足缺乏管理层支持缺乏管理层支持要即时看到结果要即时看到结果缺乏适当指导缺乏适当指导/支持支持全因子试验高球例子 一个简单的 2x2 因子试验q一位高球手试验两个球杆制造商和两种球的性能. 他用每套球杆和每种球进行练习并记下了杆数.q我们称此为全因子设计, 所有因子的每个水平与所有其它因子的所有水平组合进行试验.q本实验中, 因子, 因子的水平及因变量都是什么?pingpeerlesstop flite8784titleist8682球杆球杆球球5 .32868728284pingpeerless因变量因变量球杆

16、主效果计算主效果q主效果 因变量由于改变因子的水平所引起的平均变化.5 . 12848728286topflitetitleist因变量因变量球主效果什么是主效果?是指用topflite 牌球与用 titleist 牌球时平均杆数的变化.高球的主效果高球的主效果8383.58484.58585.586topflitetitleist球的类型球的类型平均杆数平均杆数1.5 杆主效果2q再考虑行走/开车及喝啤酒的实验.m本实验中, 因子, 因子的水平及因变量都是什么?q主效果都有多大?行走 开车0858449285交通手段啤酒42928528584行走开车主效果因变量因变量交通4285922858

17、440因变量因变量啤酒主效果主效果图q对前面两个例子, 用minitab的主效果图表达m提示: stat anova main effects plotsgolf.mtwclubballpingpeerlesstopflitetitleist86.285.484.683.883.0score_1main effects plot - data means for score_1transbeersridewalk0484.585.586.587.588.5score_2main effects plot - data means for score_2交互作用图q对前面两个例子, 用minit

18、ab的交互作用图表达m提示: stat anova interactions plot?titleisttopflitepeerlessping828384858687clubballmeaninteraction plot - data means for score_1ridewalk40929190898887868584beerstransmeaninteraction plot - data means for score_2交互作用q交互作用 一个因子的水平变化引起的因变量变化在另一个因子的不同水平不完全相同.m在低的啤酒水平, 交通工具的影响是: m在高的啤酒水平, 交通工具的影

19、响是:q啤酒/交通的交互作用大小是, 这两个影响的差值:185847928532/)1(7(?行走 开车0858449285交通手段啤酒从另一个角度看交互作用q还记得随机分区实验中讲过的加和性模型吗?q由残值与预期值图所示该模型与实际不符合q加入交互作用项后就改正了这个差劲的模型q最后的模型:ijjiijy0.50.0-0.576543210residualfrequencyhistogram of residuals252015105010-1observation numberresiduali chart of residualsmean=7.11e-16ucl=0.7292lcl=-0

20、.729212111090.50.0-0.5fitresidualresiduals vs. fits210-1-20.50.0-0.5normal plot of residualsnormal scoreresidualresidual model diagnosticsijjijiijy2k 因子设计使用 2k 设计的首要五点理由q使用因子试验的第一个理由是:q因子试验设计易懂易解 (minitab 有许多 2k 设计的路径)q因子试验设计构成部分实施因子试验设计这个高级技术课题的基础q当需要更多的详细资讯时因子试验设计可扩充形成合成设计q因子试验设计对每一因子要求进行较少的试验y =

21、f(x)2k 因子设计 - 符号q2k 设计是所有因子只有两个水平的试验.q符号:m一般而言: 在 2 x 2 x 3 试验中有多少因子和每个因子几个水平?全因子试验中有多少种试验组合?m在 2 x 2 x 2 x 2 x 2 试验中有多少因子和几个水平? 全因子试验中有多少种试验组合? 25 等于什么?m在 27 试验中有多少因子和几个水平?有多少种试验组合?q2km在 2k 因子试验中有多少因子和几个水平?m有多少种试验组合?几点要素 q在 2k 的试验中: m将一个因子的水平指定为“低”并编码为 -1m将另一个因子水平指定为“高”并编码为 +1q标准顺序:熔炉-1-1-1-1-1-111

22、-11-111111温度 时间-1-11-1-1111p该表称之为对比差异表p练习m创作一个 24 因子设计矩阵m需要作多少次试验? temp主效果q在 2k 的试验设计 doe 中:m一个因子的主效果是该因子在“高”水平时所有数据的平均值减去该因子在“低”水平时所有数据的平均值.m或:m对于我们的试验, 温度的主效果为:低高因变量因变量主效果温度 时间炉子hrc-1-1-1431-1-145-11-14511-149-1-11431-1146-111451114925. 34425.47445434543449464945温度用图形展示主效果25. 34425.47低高因变量因变量主效果42

23、434445464748低 (-1)高 (+1)因变量因变量 (hrc)+3.2544低温度rch25.47高温度rch温度的主效果温度的主效果水平水平 (温度温度)从对比差异表中计算主效果q将因变量乘以对应因子的符号 (-1 或 +1), 然后相加求和, 并除以 n (各水平数据点的个数)温温度 时间炉炉子hrchrcx温hrcx温度 hrcx时间 hrcx炉hrcx炉子-1-1-1431-1-145-11-14511-149-1-11431-1146-1114511149合计n合计/n-4345-4549-4346-45491343.25-43-43-45-4545-4549-49-434

24、3-464645454949111442.750.25交互作用的对比差异和计算q怎样计算交互作用的对比差异?m将它们相乘在一起!温温度时间炉炉子温*时温*炉时*炉 温*时*炉hrc-1-1-1431-1-145-11-14511-149-1-11431-1146-111451114913111合计444n3.252.750.25合计/n1-1-111-1-1111-1-1111-11-1-1-1-1-111-1-1-11-111131-1-144440.75 0.25 -0.25-0.25p用相同的方法计算交互作用的大小.?部分实施因子 doe+ +部分实施因子设计 什么时候启用?q当变量数目

25、使得全因子试验不切实际时.q当我们可以假定高阶交互作用可以忽略不计时.q当主效果和低阶交互作用最重要时.q当该试验是一个筛选性试验时.m筛选性试验用于确定哪一个变量, 如果有的话, 影响该因变量.部分实施因子的主要想法q效果的稀疏性 q当有许多变量时, 系统因变量可能主要受某些主效果和低阶交互作用的驱动q投射特征 q部分因子设计可以投射为部分重要因子的更高分辨率设计q系列试验 q有可能将 2个或更多部分因子试验组合在一起聚合成一个较大的设计来估计因子和交互作用的影响.一个二分之一部分实施因子设计实例q一黑带需要评估4个因子, 每因子两水平, 但是他做不起16个试验.q怎样增加第四个因子 (时间

26、)?m用时间替代3因子交互作用!runtempsprayconct*st*cs*ct*s*ctime1-1-1-1111-121-1-1-1-1113-11-1-11-11411-11-1-1-15-1-111-1-1161-11-11-1-17-111-1-11-181111111-111-11-1-11?二分之一部分实施因子是全因子的一半!q该表展示 24 全因子对比差异q该设计中, 因子 d 与交互作用 abc 同名. 即 d = abcrun i a b c d ab ac bc abc abcd11 -1 -1 -1 -1111-1121 1 -1 -1 -1 -1-111-131

27、-1 1 -1 -1 -11-11-141 1 1 -1 -11-1-1-1151 -1 -1 1 -11-1-11-161 1 -1 1 -1 -11-1-1171 -1 1 1 -1 -1-11-1181 1 1 1 -11111-191 -1 -1 -1 1111-1-1101 1 -1 -1 1-1-1111111 -1 1 -1 1-11-111121 1 1 -1 11-1-1-1-1131 -1 -1 1 11-1-111141 1 -1 1 1-11-1-1-1151 -1 1 1 1-1-11-1-1161 1 1 1 111111-1-1-1-1-1-1-1-1111111111111111111111111?q换句话说, 选出的用于进行试验的试验组合与 4因子交互作用项同名 (所有项 都是+1). 即i = abcd部分实施因子设计练习q以这个矩阵作为起点, 设计一 个二分之一部分因子试验以便用16个试验组合评估5个主效果. 该试验的同名结果是什么?q设计一个试验以便仅

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论