《圆锥的体积》教学设计(通用5篇)_第1页
《圆锥的体积》教学设计(通用5篇)_第2页
《圆锥的体积》教学设计(通用5篇)_第3页
《圆锥的体积》教学设计(通用5篇)_第4页
《圆锥的体积》教学设计(通用5篇)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、圆锥的体积教学设计(通用5篇)作为一名优秀的教育工作者,时常需要准备好教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。那么问题来了,教学设计应该怎么写?以下是小编精心整理的圆锥的体积教学设计(通用5篇),欢迎大家借鉴与参考,希望对大家有所帮助。圆锥的体积教学设计1教学内容:小学数学人教版第12册42页43页教学目标:1通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。2通过学生动脑、动手,培养学生的思维能力和空间想象能力。3、培养学生个人的自主学习能力和小组合作学习的能力。教学重点和难点:掌握圆锥体体积公式的推导。教具准备:1、等底等高的圆柱体和圆锥体6

2、套,大小不同的圆柱体和圆锥体6套、水槽6套。2、多媒体课件设计教学过程设计(一)复习准备:1怎样计算圆柱的体积?(板书:圆柱体的体积=底面积×高)2一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?3圆锥有什么特征?学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。(二)导入新课今天我们就利用这些知识探讨新的问题-怎样计算圆锥的体积(板书课题)(三)进行新课1、探讨圆锥的体积公式教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:学生回答,教师板书:圆柱-(转化)-长方体圆柱体积公式

3、-(推导)长方体体积公式教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。(1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。(板书:等底等高)(2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍

4、数关系?(指名发言)的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。(3)学生分组做实验。A.谁来汇报一下,你们组是怎样做实验的?b.你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)同学们得出这个结论非常重要,其他组也是这样的吗?我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)(4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体

5、积的。(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了水,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)(老师在体积公式与“等底等高”四个字上连线。)现在我们得到的这个结论就更完整了。(指名反复叙述公式。)今后我们求圆锥体体积就用这种方法来计算。(三)巩固反馈1例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?A学生完成后,进行小组交流。B你是怎样想的和怎样解决问题。(提问学生多人)C教师板书:×19×12=76(立方厘米)答:它的体

6、积是76立方米2练习题。一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)3、出示例2:要求学生自己读题,理解题意思。在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)(1)提问:从题目中你知道什么?(2)学生独立完成后教师提问。并回答同学的质疑:3.14×()×1.2×表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?.4、比较:例1和例2有什么地方不同?(1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再

7、求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。四、巩固练习:1、一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?2、选择题。每道题下面有3个答案,你认为哪个答案正确就用手指数表示。(1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是()立方米3a立方米9立方米(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6立方米,圆锥体体积是()立方米(1)6立方米(2)3立方米(3)2立方米2、学生操作:看看我们的教室是什么体?(长方体)要在我们的教室里放一个尽可能大的圆锥

8、体,想一想,怎样放体积最大?(小组讨论)指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大的圆锥体。五:这节课你有什么收获?六、作业:书本44页第3、4、5。圆锥的体积教学设计2基本信息课题圆锥的体积作者及工作单位殷兴均达州市宣汉县南坝镇第二中心小学教材分析圆锥的体积是西师版义务教育课程标准实验教科书数学六年级下册的内容。本节课是在学习了圆柱的体积和认识了圆锥的特征的基础上进行,其教学内容是推导出圆锥体积公式,并能灵活运用公式解决生活中的实际问题。为了加强数学知识与学生生活的联系,教材用实心圆锥和实心圆柱分别没入同一个水槽

9、中,观察水槽中的水位分别上升了多少的实验,激发学生探究圆锥体积的兴趣。学情分析六年级学生经过几年的数学知识学习已经初步掌握了建立空间概念的方法,有了一定的空间想象能力。学习圆锥体积之前,学生已经学会推导圆柱体积公式,认识了圆锥的特征。因为二者形状的相似性很容易让学生联想到这两种几何图形之间的联系,从而借助转化思想的经验,使学生在参与探究的过程中经历知识的建构过程。但是我校是处于城镇边缘的农村学校,学生的基础较差,接受能力有限,对于本节的学习有一定的难度。教学目标1、理解圆锥的体积的推导和计算方法,并能灵活运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。2、运用实验法在合作探究中体会等底

10、等高圆柱体积与圆锥体积内在联系,从而完成圆锥体积公式的推导。3、体会数学与生活的密切联系,感受探究成功的快乐。教学重点和难点重点:圆锥体积计算公式的推导,并能运用公式解决实际问题。难点:在合作探究中体会等底等高圆柱体积与圆锥体积内在联系。教学过程教学环节教师活动预设学生行为设计意图一、复习准备1、我们已经认识了一些几何体,哪些几何形体的体积我们已经学过了?2、圆锥有什么特点?(同时出示幻灯)3、在这个圆锥体中,几号线段是圆锥体的高。4、引入:看来,同学们对于圆锥体的特征掌握得很好。你们想不想继续研究圆锥呢?1.长方体、正方体、圆柱。2.一个顶点;一个侧面,展开是一个扇形;一个底面,是圆形;一条

11、高,从顶点到底面圆心的垂直距离。3.学生手势出示4.想复习内容紧扣重点,由实物到图形,采用对比的方法,不断加深学生对形体的认识。二、创设情境出示等底等高的实心圆锥、实心圆柱和装有适量水的水槽(标有刻度)引入新课(板书课题)激发学生兴趣,学生认真观察,跃跃欲试,都想争取参加实验。联系生活实际创设情境,引发学生的好奇心,激发学习兴趣。情境创设可以让学生感受到数学与生活实际密不可分,从而感受用数学能够解决实际问题的思想,激发学生学习数学的兴趣。三、学习新课1、猜想体积大小实心圆锥和实心圆柱的体积有怎样的关系圆锥体积小于圆柱体积。圆锥体积可能是圆柱体积的二分之一、三分之一。猜想关系,这个环节,共进行两

12、次猜想,第一次是猜想体积大小。第二次是让学生凭借直觉大胆提出猜想,猜想圆锥的体积与圆柱体积的可能关系,同时在猜想中明确探索方向。学生可能猜想二分之一、三分之一等。在形成猜想后,再引导学生“实验验证”自己的猜想。2、理解等底等高我们研准备一个圆柱体和一个圆锥体。你们比比看,这两个形体有什么相同的地方?底面积相等,高也相等,用数学语言说就叫“等底等高”。底面积相等,高也相等。为推导圆锥的体积计算公式打下基础3、猜想关系、实验验证同学们有说二分之一的,有说三分之一的,争是争不出结果的,得用实验来验证。谁来汇报一下,你们组是怎样做实验的?你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?分组做实验

13、。学生汇报用等底等高的圆锥和圆柱,通过实验,让学生研究出等底等高的圆柱与圆锥之间的关系。再利用课件演示,帮助学生回顾自己的实验过程,加深学生对实验过程的体验。4、总结公式我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)V锥=V柱×1/3=sh×1/3“sh”表示什么?乘1/3呢?学生尝试总结圆锥的体积计算公式。通过实验总结结论,培养学生的归纳概括能力和语言表达能力。5、全面验证是不是任何一个圆锥体的体积都是任何一个圆柱体体积的1/3呢?(课件演示)等底不等高、等高不等底为什么你们做实验的圆锥体积等于圆柱体积的1/3呢?现在我们得到的这个结论就更完整了。(指名反复叙

14、述公式。)今后我们求圆锥体体积就用这种方法来计算。(因为是等底等高的圆柱体和圆锥体。)在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。注重强调了等底等高圆锥和圆柱的体积才有这样的倍数关系,突出了重点。6、圆锥体积公式的实际应用(1)例:一个圆锥形的物体,底面积是11平方厘米,高是9厘米它的体积是多少立方厘米?(2)一个圆锥的底面直径是20厘米,高是6厘米,它的体积是多少?(只列式不计算)(3)一个圆柱与一个圆锥体积相等,底面积也相等。圆柱高15厘米,圆锥高多少厘米?(4)一个圆柱与一个圆锥体积相等,高也相等。圆锥的底面积是圆柱底面积的几倍?圆锥的体积教

15、学设计31、认知目的:(1)让学生认识圆锥,掌握它的特征。(2)理解圆锥的体积计算公式的推导,并能灵活运用公式计算圆锥的体积。2、能力目的:发展学生的空间观念,培养学生观察,动手操作,总结规律的能力。3、情感目的:创造和谐的师生关系,调动学生的非智力因素,激发学生的学习兴趣。教学重点:建立圆锥体的表象,概括圆锥体的特征,并能运用公式计算圆锥体的体积。教学难点:理解等底等高的圆锥体和圆柱体的关系,以及圆锥体积公式的推导过程。教学准备:1、多媒体计算机软、硬件一套。2、学生实验用圆柱、圆锥容器十套,红色溶液一桶。3、幻灯机,圆锥体实物如:小丑帽、重锤等。教学过程:一、复习准备:1、圆柱的体积计算公

16、式是什么?2、已知一个圆柱的半径是2厘米,高是5厘米,它的体积是多少?二、导出新课:我们已经学习过了长方体和正方体及圆柱体的体积,在实际生活中,经常会遇到另一种物体(出示圆锥体实物如:小丑帽、重锤),这种形体叫圆锥体。你们在生活中见过这样的物体吗?(请学生回答)这节课我们重点研究圆锥的体积。(板书课题:圆锥的体积)三、新授:1、学生通过对圆锥实物及电脑图形的观察,多角度多种实物中得到对圆锥感性认识,在建立了感性认识的基础上,师生共同总结出圆锥的特征是:它只有一个底面;这个底面是一个圆;它有一个顶点。教师拿出已准备好的圆锥教具,将其一分为二,叫学生观察圆锥的高,指出从顶点到底面圆心的距离叫圆锥的

17、高。2、绍各部分的名称(用电脑出示圆锥图形)3、圆锥体积公式的推导:通过分组实验让学生自己发现圆柱、圆锥在等底等高时的体积关系。在实验前教师提出实验的要求和实验要解决的问题。问题:(1)圆锥与圆柱是否等底等高?(2)倒了几次才能倒满空圆柱?(3)这个实验说明等底等高的圆柱、圆锥体积有怎样的关系?要求:(1)分五人一组,相互合作,共同完成实验。(2)教师每组给一个中空、未封底的圆锥,学生自己动手制作一个与它等底等高的圆柱。制作的圆柱也不封底。(3)将圆锥装满溶液,然后倒入圆柱里,装满圆柱为止。实验结束后,让学生自己总结得出结论,教师根据学生得出的结论得出锥=圆锥的体积教学设计4教学过程:一、情境

18、引入:(1)(老师出示铅锤):你有办法知道这个铅锤的体积吗?(2)学生发言:(把它放进盛水的量杯里,看水面升高多少)(3)教师评价:这种方法可行,你利用上升的这部分水的体积就是铅锤的体积,间接地求出了铅锤的体积。真是一个爱动脑筋的孩子。(4)提出疑问:是不是每一个圆锥体都可以这样测量呢?(学生思考后发言)(5)引入:如果每个圆锥都这样测,太麻烦了!类似圆锥的麦堆也能这样测吗?(学生发表看法),那我们今天就来共同探究解决这类问题的普遍方法。(老师板书课题)设计意图:情景的创设,激发了学生学习的兴趣,使学生产生了自己想探索的需求,情绪高涨地积极投入到学习活动中去。二、新课探究(一)、探究圆锥体积的

19、计算公式。1、大胆猜测:(1)圆锥的体积该怎样求呢?能不能通过我们已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式)(2)圆锥和我们认识的哪种立体图形有共同点?(学生答:圆柱)为什么?(圆柱的底面是圆,圆锥的底面也是圆)(3)请你猜猜圆锥的体积和圆柱的体积有没有关系呢?有什么关系?(学生大胆猜测后,课件出示一个圆锥与3个底、高都不同的圆柱,其中一个圆柱与圆锥等底等高),请同学们猜一猜,哪一个圆锥的体积与这个圆柱的体积关系最密切?(学生答:等底等高的)(4)老师拿教具演示等底等高。拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的'

20、。”(5)学生用上面的方法验证自己做的圆锥与圆柱是否等底等高。(把等底等高的放在桌上备用。)2、试验探究圆锥和圆柱体积之间的关系我们通过试验来研究等底等高的圆锥体积和圆柱体积的关系。(1)课件出示试验记录单:a、提问:我们做几次实验?选择一个圆柱和圆锥我们比较什么?b、通过实验,你发现了什么?(2)学生分组用等底等高的圆柱圆锥试验,做好记录。教师在组间巡回指导。(3)汇报交流:你们的试验结果都一样吗?这个试验说明了什么?(4)老师用等底等高的圆柱圆锥装红色水演示。先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满?把圆柱装满水往圆锥里倒,几次才能倒完?(教师让学生注意记录几次

21、,使学生清楚地看到倒3次正好把圆柱装满。)(5)学生拿小组内不等底等高的圆锥,换圆锥做这个试验几次,看看有没有这样的关系?(学生汇报,有的说我用自己的圆锥装了5次,才把圆柱装满;有的说,我装了2次半)(6)试验小结:上面的试验说明了什么?(学生小组内讨论后交流)(这说明圆柱的体积是与它等底等高圆锥体积的3倍.也可以说成圆锥的体积是和它等底等高的圆柱的体积的三分之一。)3、公式推导(1)你能把上面的试验结果用式子表示吗?(学生尝试)(2)老师结合学生的回答板书:圆锥的体积公式及字母公式:(3)在探究圆锥体积公式的过程中,你认为哪个条件最重要?(等底等高)进一步强调等底等高的圆锥和圆柱才存在这种关

22、系。设计意图:放手让学生自主探究,在实践中真正去体验圆柱和圆锥之间的关系。(二)圆锥的体积计算公式的应用1、已知圆锥的底面积和高,求圆锥的体积。(1)出示例2:现在你能求出老师手中的铅锤的体积吗?(已知铅锤底面积24平方厘米,高8厘米)学生尝试解决。(2)提问:已知圆锥的底面积和高应该怎样计算?(3)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算。2、已知圆锥的底面半径和高,求圆锥的体积。(1)出示例题:底面半径是3平方厘米,高12厘米的圆锥的体积。(2)学生尝试解答(3)提问:已知圆锥的底面半径和高,可以直接利用公式v=1/3兀r2h来求圆锥的体积。3、已知圆锥的底面直径和高

23、,求圆锥的体积。(1)出示例3:工地上有一些沙子,堆起来近似于一个圆锥,这堆沙子大约多少立方米?(得数保留两位小数)(2)要求沙堆的体积需要已知哪些条件?(由于这堆沙堆近似圆锥形,所以可利用圆锥的体积公式来求,需先已知沙堆的底面积和高)(3)题目的条件中不知道圆锥的底面积,应该怎么办?(先算出沙堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出沙堆的体积)(4)分析完后,指定两名学生板演,其余学生将计算步骤写在教科书第26页上做完后集体订正。(注意学生最后得数的取舍方法是否正确)(5)提问4、已知圆锥的底面直径和高,可以直接利用公式。v=1/3兀(d/2)2h来求圆锥

24、的体积。设计意图:公式的延伸让学生对所学知识做到灵活应用,培养了学生活学活用的本领。圆锥的体积教学设计5一、教学目标1、知识与技能理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。2、过程与方法通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。3、情感态度与价值观渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。二、教学重、难点重点:掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。难点:理解圆锥体积公式的推导过程。三

25、、教具学具不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。四、教学流程(一)创设情境,提出问题师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?生:我选择底面最大的;生:我选择高是最高的;生:我选择介于二者之间的。师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?生:只要求出冰淇淋的体积就可以了。师:冰淇淋是个什么形状?(圆锥体)生:你会求吗?师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥

26、的体积。并板书课题:圆锥的体积。(二)设疑激趣,探求新知师:那么你能想办法求出圆锥的体积吗?(学生猜想求圆锥体积的方法。)生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。师:如果这样,你觉得行吗?教师根据学生的回答做出最后的评价;生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?小组中大家商量。生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。师:此种方法是否可行?学生进行评价。师:哪个小组还有更好的办法?生

27、:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。1、各小组进行观察讨论。2、各小组进行交流,教师做适当的板书。通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积×高”来表示圆锥体的体积行不行?为什么?师:圆锥体的体积小,那你猜测一下这两个形体的体积的大小有什么样的关系?生:大约是圆柱的一半。生:师:到底谁的意见正确呢?师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论