小学阶段分数教学策略初探_第1页
小学阶段分数教学策略初探_第2页
小学阶段分数教学策略初探_第3页
小学阶段分数教学策略初探_第4页
小学阶段分数教学策略初探_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 小学阶段分数教学策略初探 无锡市花园实验小学 赵国强一、问题提出作为小学数学的“三数”(整数、小数、分数)之一,分数的重要性不言而喻。而关于分数的教学,历来都是教学的重难点,作为小学数学教师,应该客观、正确、全面地认识、研究它。二、情况分析(一)分数的定义张奠宙教授在分数的定义一文当中,提到了关于分数的几种定义:1份数的定义教材很多都是从份数的定义开始的。一般都这样描述:单位1平均分为若干份,表示这样的一份或几份的数叫做分数。2商的定义分数是两个正整数a 除以b 的商。所以分数是一个商。用a除以b,在除不尽的情况下面,我们就得到了一个分数。3比的定义分数的第三个定义是比的定义。两个自然数 a

2、比b, b 0, 即叫做分数。“比”的定义是将份数定义扩展,分数乃是“一部分和另一部分之比”,另一部分可以是整体,也可以是部分,把一部分当做新的整体。(二)分数的内容小学阶段,分数的学习,主要包括“初步认识分数”、“理解分数、小数、百分数的意义”“会进行小数、分数和百分数的转化”“能比较小数的大小和分数的大小” “能分别进行简单的小数和分数(不含带分数)的加、减、乘、除运算及混合运算(以两步为主,不超过三步)”和“能解决小数、分数和百分数的简单实际问题”,真正体现了“逐级递进、螺旋上升的原则”。(三)分数的性质分数基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。也就是

3、说,这一群(类)分数,有着不同分数的外形,但是它的数值是一样的,在数学上面,这叫做“等价类”。最简分数固然重要,但分数的约分,通分在后续分数比较大小、四则运算学习中非常有用,所以必须认真学习分数的基本性质,加深理解。三、教学策略我们一线教师不妨扪心自问:“我拿什么吸引学生呢?我拿什么让学生忘记吵呢?”“我该如何体现教师的主导作用呢?”这也迫使我们教师在课堂教学当中选择合理的教学策略,努力追求教学的生动,追求学习的高效。(一)创设情境,表征转换,认识分数数学情境是一种激发学生问题意识为价值取向的刺激性的数据材料和背景信息,是从事数学活动的环境,产生数学行为的条件。创设数学情境既要关注“社会化”,

4、又要立足“儿童化”;既要关注“生活化”,又要突出“数学味”;既要倡导内容“综合性”,又要兼顾形式“多样性”。笔者认为,人教版三年级上册教科书上面的“主题图”所创设的数学情境的“生活化”值得商榷:实际生活中,哪有人会将月饼直接放在地上进行切分?既然“生活化”值得商榷,那么这个教学情境也就失去了真实性,不用也罢。倒不如将平分月饼的情境改为日常生活中经常遇到的“分苹果”的情境。美国心理学家和教育家杰罗姆布鲁纳认为在人类智慧生长期间,有三种表征系统在起作用,这就是“动作表征”“表象表征”和“符号表征”。我们认为,三年级学生在学习“分数初步认识”时,学习过程如下图所示:(二)借助科技,辨清率量,理解意义

5、“抛硬币”是一类传统的数学题,它涉及到了“统计与概率”的内容,并且理论上它的概率是。可是,在具体的课堂上,因为时间的限制、样本数量的限制,频率很难接近,数据显示出来的结果与“理论上概率是”往往存在着一定的误差。这时候,我们教师可以借助于“超级画板”来进行直观、形象地演示。通过演示,教师可以进行大量的模拟实验(只要单击相关按钮,就可以迅速地进行成百上千次的模拟实验),帮助学生感受随机现象的随机性,感受到理论概率和实验概率之间的关系,感受到更好地理解频率、概率的含义,感受到试验次数与概率之间的关系,明白样本越大,规律的变异就越小。同样是关于“分数的意义”,还有这样一道经典的例题:两根同样长的绳子,

6、一根用去了,另一根用去了米,问哪一根用去的多?前者“一根用去了”当中的“”,是作为“率”的分数,它表示的是“相对的量”,这个“”到底表示多少长,关键还要看整体(单位“1”)表示多少;而后者“另一根用去了米”当中的“米”,是作为“量”的分数,它表示的是“绝对的量”,是不变的、稳定的。当然,这道例题完整的答案是要分情况讨论的(详见下表):(三)统筹大小,完美升华,相互转化广东省特级教师黄爱华老师提出以“大问题”为导向的课堂教学研究,力图通过两到三个牵一发而动全身的问题,提炼大环节,构建大空间,生成一种多线交融,分层并进的新的课堂教学结构。例如在教学“百分数的认识”时,我们教师不妨活用广东省特级教师

7、黄爱华老师的三个大问题贯穿全课:什么是百分数?百分数和分数有什么不同?有了分数,为什么还要用百分数?这三个大问题既可以沟通新旧知识之间的联系,更将百分数的意义、区别于分数的特殊处及与现实生活的联系等重难点问题都深入渗透了进去。除了设计“大问题”外,我们教师更应该注重小细节。一次,江苏省特级教师华应龙老师上小数、分数、百分数互化的复习课,要求学生把0.2化成百分数。在兰兰同学回答出20%后,华老师让她说说思路。她说:“0.2=,十分之”同学们“嘘”声一片。华老师示意别打断她。“0.2=”。华老师耐着性子让她说完。最后兰兰说道“分子分母同乘以20,等于20%。”华应龙老师结束时说:“兰兰同学运用小

8、数的意义把小数化成分数,再根据分数的基本性质进行约分,接着又一次灵活运用分数的基本性质,将分数巧妙地化成了百分数我都没有想到这么好的复习小数、分数与百分数互化的例子”。他的这一番话把课堂教学中的生成资源作了一个升华小数、分数、百分数之间的关系。这个升华也应该是这堂复习课要达到的目标。(四)把握关键,灵活运用,比较大小现行教材在关于两个分数的大小比较时,往往是先学习通分后学分数的大小比较。这种做法,看上去似乎相当高效,殊不知,在追求快速、高效的同时,很可能将“发展学生思维”的其他通道给堵上了。我们不妨学习一下华东师范大学的袁震东教授所介绍的来源于美国的数学教育:先学分数的大小比较,再学通分。这样

9、有利于培养学生灵活多变的思维方式,提高学生解决问题的能力。例如我们教师可以不先教通分,而是从分数的意义入手,引导学生学会比较这两组分数的大小:“”这组分数,因为他们的分子相同,因此,根据分数的意义,分母越大的分数数值反而越小,即;而这组分数,因为第一个分数的分子小于第二个分数的分子,而其分母反而大于第二个分数的分母,因此,。除了从通分和分数的意义入手比较分数的大小之外,我们还可以灵活运用“同分子比较法”“搭桥法”“比较倒数法”等方法来比较各种分数的大小。教给学生各种方法,供其自由选择、以便灵活运用。例如搭桥法在要比较的两个分数之间,找一个中间分数,根据这两个分数和中间分数的大小关系,比较这两个

10、分数的大小。例如比较和的大小。把作为中间分数。可以很容易看出:,所以。又例如比较和的大小。我们可以先将和分别与相比较,比大,比大。而,因此+,所以。(五)利用直观,数形结合,进行运算小学生的思维特点(从以具体形象思维为主要形式向以抽象逻辑思维为主要形式过渡),决定了我们教师在教学时应当利用直观,培养学生的推理能力。例如有这样一道例题:一瓶油重千克,用去,问用了多少千克油?我们用长方形表示单位“1”,涂上阴影表示分数(第一幅图表示,第二幅图再将取出的等分成四份,再取出三份,也即再取出),就可以非常直观地看出的积应该是。结合直观图和算式,我们可以很清楚地看到两个因数的分子分母与积的分子分母的关系,

11、列出算式,从而启发合情推理,理解分数乘法的意义,得到分数乘法的计算法则。有这样一道数学题,求“”的和。学生最常规的解题方法,一般是采用通分求和的方法解题,这样往往费时费力,还容易出错。因此,为了提高学生的学习效率,我们可以引导学生充分利用数形结合,观察算式的特点和图形的规律,争取将复杂的分数加法转化成一步计算的分数减法。即:原式要求的是“”的和,我们将它们转化成图形(见下图)后,不难发现,要求“”的和,我们可以进一步将它转化成“总量1”减去“深色区域”(也即),从而迅速而又准确地得出答案。(六)应用开放,厘清关系,解决问题有这样一道花圃设计问题:有一块长4米,宽3米的园地,现要在园地上辟出一个

12、花圃,使花圃的面积是原园地面积的,问如何设计?这既是几何领域的应用开放题,同时也同分数有关(使花圃的面积是原园地面积的)。现选取学生的部分答案展示如下:六年级上册第三单元“分数除法”增加了两类“问题解决”,其中一类就是利用抽象的“1”来解决的实际问题。教材利用修路这一“工程问题”来引入,并且,在练习中编排了运输问题、行程问题、泄洪问题、种树问题,使学生学会透寻找不同情境背后的共同的数学模型。这类题目首先要学会分析数量关系。在两种基本数量关系的复合中,存在着主体数量关系和从属数量关系。主体数量关系的确定,不取决于题目的客体,而是基于解题者的选择,不同的选择反映了不同的解题思路。例如:甲、乙两辆清洁车执行公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论