《直线与平面垂直的定义与判定》教学案例_第1页
《直线与平面垂直的定义与判定》教学案例_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学习必备欢迎下载直线与平面垂直的定义与判定教学案例广西桂林市全州县石塘高级中学廖永球1 案例背景笔者上课的时间是 20102010 年 3 3 月 9 9 日第三节,围绕新课改的精神,如何进行 课堂教学上的公开课。我校是乡下普通高中,上课的班级是高二普通班,学生 基础知识十分薄弱。2 教学课题2.12.1课题:直线与平面垂直的定义与判定教学案例2.22.2教材:高中数学第二册(下 A A)人教版第九章直线、平面、简单几何体中的第四节“直线与平面垂直的判定和性质”第一课时3 教材分析3.13.1 内容分析直线和平面垂直的定义与判定”这一内容经修改后教学要求大大降低,将 三垂线定理及其逆定理 由

2、掌握 级降为 了解 级要求。强调通过直观感知、动 手实践来认知和理解线面垂直的定义和判定定理,能运用定义及定理证明一些 空间位置关系的简单命题。在教学内容设计上更注重实践操作和探究。3.23.2教学目标(1)(1)知识目标:理解和掌握直线与平面垂直的定义及判定定理。(2)(2)能力目标:在合作探究中发展学生几何直观能力和空间想象能力。(3)(3)德育目标:通过创造情境激发学生学习的兴趣与热情;鼓励合作探究、 互助交流,培养创新意识。3.33.3教学重点与难点(1)(1)教学重点:会运用定义与判定定理证明直线与平面的垂直关系。(2)(2)教学难点:在正方体模型中寻找线面垂直关系并予以证明。4 教

3、学方法与思路本教学内容在教法设计上力求做到用教材而非教教材:1 1.充分利用 观察”、 思考”、探究”等,在原有教材内容的基础上重组整合教学内容,创设开放式 问题情境,给学生创造自己动手操作的机会,利用自己制作的模型分组讨论, 自主探究。2 2.多媒体演示为学生理解和掌握几何图形性质的教学提供形象支持, 有助于提高学生的几何直观能力和空间想象能力。3 3.学生课前准备:自由分组; 三角板、正方体模型。5 教学过程学习必备欢迎下载师:空间中直线和平面有哪几种位置关系?生 1 1:平行、相交、直线在平面内。师:直线与平面的位置关系有且只有三种:直线在平面内、直线和平面相交、直线和平面平行。请欣赏图

4、片:当把笔直的旗杆抽象成直线 I I,天安门广场抽象 成平面:,我们可以看到直线 I I 与平面具有怎样的位置关系?生:垂直的!师:下面我们来学习:直线与平面垂直的定义与判定。【探究活动一:尝试探究中生疑 】一. 引出定义师:请大家拿出一支笔,竖立在桌面上,你会发现笔与桌面呈怎样的位置关系? 生:垂直!师:请在桌面任取一条直线,观察此直线与竖立直线会有怎样的位置关系?学生通过自己尝试并观察周围同学的实验操作,得出结论:无论桌面什么 位置上的直线都会与竖立的直线成相交垂直或异面垂直的位置关系! 师:由此引出空间中直线和平面垂直的定义:如果一条直线垂直于平面内的任 何一条直线,则这条直线与平面垂直

5、。二. 强化定义师:怎样可以判定一条直线和平面垂直呢?如果直线与平面内无数条直线都垂 直,能否判定直线与平面垂直?生:用桌面和笔不断进行尝试与探索,对线面垂直的定义有了深层次的理解。生 2 2:不能。如一条直线与平面斜交。可以在平面内先找到一条与斜线垂直相 交的直线,再把这条直线平移,可以得到平面内有无数条直线与斜线垂直,但 很明显斜线并不与平面垂直。师:很好! 该同学抓住了句中关键字: 无数! 回到线面垂直的定义注意其关键字:无数”并不等价于 任何”由于平面内直线的任意性,给证明和判断空间中的线 面垂直带来不便。于是学生在合作探究中又生一问在平面内找到多少条直线与已 知直线垂直就足以判定直线

6、与平面垂直呢?【探究活动二:分组讨论中释疑 】让学生分组实验,大胆讨论猜想,借助桌面、笔、三角板等进行探究实验。生:只需要在平面内找两条直线与已知直线垂直就可以了。师:是平面内的任意两条吗?生 3 3:必须是平面内两条相交直线!教师用两三角板直观演示,得出结论:线不在多,相交就行!至此得到一 个判定空间中直线与平面垂直的重要判定定理:当平面内两条相交直线都与直 线 I I 垂直时,就可以判断直线 I I 与平面垂直了!通过教师创设问题情境,学生分组合作、讨论、交流,发现并容易接受空 间中线面垂直的判定定理。深化定理,加强训练学生对图形语言、文字语言、 符号语言的相互转化能力。展示线面垂直的几种

7、常见直观图的画法。学习必备欢迎下载【探究活动三:】师:线面垂直可以借助线线垂直予以证明,也体现了转化的思想。你能举出一 些实际生活中的例子是借助判定定理得出线面垂直的吗?生 4 4:比如我们所在的教室。右前方有一条竖直的墙角线,它与前方地面一条 地脚线垂直,同时与我右边地脚线也垂直,而且地面这两条地脚线是相交直线! 我们由判定定理得竖直的墙角线与地面垂直!教师引入教材中的探究问题,鼓励学生借助线面垂直的定义及判定予以说明。【探究活动四:实验操作中新疑 】师:在正方体模型中你能找到线面垂直的位置关系吗?生:通过模型得出结论:每条侧棱垂直于上下底面,水平的棱垂直于左右侧面。师:如果加上正方体的各条

8、面对角线和体对角线后,你能否找到更多的线与面 的垂直关系?生 5 5:我们组发现正方体的面对角线 BDBD 与平面 ACCACCiA Ai垂直。师:你能否证明你的结论?师:在学生表述证明过程的同时规范板书证明格式。要证明线面垂直只需在面 内找到两条相交直线,证明它们与已知直线均垂直。这是一个通过线线垂直转 化证明线面垂直的方法。生 6 6:我们组觉得线 B BiD D 与平面 A AiBCBCi好象是垂直的! 师:这组同学猜想正方体的体对角线与三条面对角线组成的平面垂直。你们能 结合线面垂直的定义和判定定理帮助他们予以证明吗?生 7 7:好象学生 5 5 得出的结论对我们证明学生 6 6 的猜

9、想有所帮助!师:非常好!你认为平面 ABCDABCD 内哪一条直线既与 BDBD 相交又与它垂直? 生& &当把正方体的右侧面放在桌面当成底面,则得到与学生7 7 已经证出的那对线线垂直完全一样!师:说得好!教师及时将学生分组讨论验证的结论展示给全体学生,并鼓励学生大胆交 流,表述理论根据,展现自我。当有学生在通过实验猜想体对角线与三条面对 角线构成的对角面垂直时,教师引导其如何利用判定定理规范证明。在教学过 程中教师必须时刻注意与学生的互动,追随学生的思维,不断调整。这也对教 师的教学基本功、应变能力、数学修养等各方面提出更高要求。由于采取“猜 想一一证明一一表达与交流”的学

10、习模式,教师充当着合作者与促进者,与学 生更为贴近,课堂气氛活跃。【归纳总结】本节课学习了空间中直线与平面垂直的定义和判定定理。借助线线垂直来 定义线面垂直;要证明线面垂直可以借助定义和判定定理转化为证明线线垂直。 在证明与判定过程中需要灵活运用转化思想,大胆猜想,小心验证。【课后作业】作业:课本 P33:P33: 2 2、3 3、4 4学习必备欢迎下载6 教学反思新课程改革要求教师成为一个研究者”,以研究者的眼光审视和分析教学 理论与教学实践中的各种问题,不断对自己的教学过程进行反思。1 1.满意的地 方:在整个教学过程中,能不断激发学生探索新知的欲望,较充分体现了课程 标准所提出的培养学生探究性学习和再创造的思维能力

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论