(第二讲)第二章控制系统的状态空间描述(1)_第1页
(第二讲)第二章控制系统的状态空间描述(1)_第2页
(第二讲)第二章控制系统的状态空间描述(1)_第3页
(第二讲)第二章控制系统的状态空间描述(1)_第4页
(第二讲)第二章控制系统的状态空间描述(1)_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二讲第二讲 控制系统的状态空间描述控制系统的状态空间描述汤奥斐汤奥斐 20152015年年5 5月月教学六楼教学六楼210210参考资料 教材: 现代控制理论(第三版),刘豹主编,机械工业出版社 参考书: 现代控制理论基础 (机械类),何钺,西安交通大学 现代控制系统(英文版)(第12版), Richard C. Dorf, Robert H. Bishop,电子工业出版社 现代控制工程(第5版), Katsuhiko Ogata,电子工业出版社本章学习简介 本章讨论动态系统的状态空间描述。主要介绍状态空间分析中 状态空间模型的建立、状态空间模型的建立、 状态空间模型的线性变换、状态空间模型

2、的线性变换、 离散时间动态系统的状态空间模型、离散时间动态系统的状态空间模型、 基于基于Matlab的控制模型的建立与变换问题的程序的控制模型的建立与变换问题的程序设计与计算设计与计算(时间允许的话时间允许的话)目的:建立起状态、状态空间与状态空间变换的概念,掌握状态空间模型的建立方法,打下状态空间分析的基础。概述 控制理论主要是研究动态系统动态系统的系统分析、优化和综合等问题。 所谓动态系统所谓动态系统(又称为动力学系统又称为动力学系统),抽象来说是指抽象来说是指能储存输入信息能储存输入信息(或能量或能量)的系统的系统。 例如, 含有电感和电容等储存电能量的元件的电网络系统, 含有弹簧和质量

3、体等通过位移运动来储存机械能量的刚体力学系统等。概述 这类系统与静态系统(静力学系统)的区别在于: 静态系统的输出取决于当前系统的瞬时输入,而动态系统的输出取决于系统当前及过去的输入信息的影响的叠加。 如,电阻的电流直接等于当前的电压输入与电阻值之比,而电容两端的电压则是通过电容的当前及过去的电流的积分值与电容值之比。概述 在进行动态系统的分析和综合时,首先应建立该系统的数学模型,它是我们进行系统分析、预报、优化及控制系统设计的基础。 在系统和控制科学领域内在系统和控制科学领域内,数学模型是指能描述动态系统的动数学模型是指能描述动态系统的动态特性的数学表达式态特性的数学表达式,它包含它包含 数

4、值型的和逻辑型的, 线性的和非线性的, 时变的和定常的, 连续时间型的和离散时间型的, 集中参数的和分布参数的等等。 这种描述系统动态特性的数学表达式亦称为系统的动态方程。概述 建立数学模型的主要方法有: 机理分析建模机理分析建模。 按照系统的实际结构,工作原理,并通过某些决定系统动态行为的物理定律、化学反应定律、社会和经济发展规律,以及 各种物料和能量的平衡关系等来建立系统模型。 实验建模实验建模(系统辨识系统辨识)。 通过对系统的实验或实际运行过程中取得能反映系统的动态行为的信息与数据,用数学归纳处理的方法来建立系统模型。概述 值得指出的是,不同建模目的,采用不同数学工具和描述方式,以及对

5、模型精度的不同要求,都会导致不同的数学模型。 因此,一个实际的系统也可以用不同的数学模型去描述。 例如,严格说来,大多数实际系统的动力学模型都具有非线性特性,而且系统是以分布参数的形式存在。 若在建立数学模型中考虑这些复杂因素,必然将使所建立的模型中含有复杂的非线性微分方程或偏微分方程,这样就给模型在系统分析、控制系统的设计和实现上带来相当大的困难性。 在给定的容许误差范围内,如果将这些复杂因素用线性特性、集中参数的形式去近似描述系统,将大大简化系统模型的复杂程度,从而使所建立的模型能有效地运用到系统分析和控制系统设计等方面。概述 当然过多考虑系统的各种复杂因素的简化和近似,也必然影响数学模型

6、的精度,以及模型在分析、综合和控制中的应用效果。 因此,一个合理的数学模型应是对其准确性和简化程度作折中考虑,它是在忽略次要因素,在现实条件和可能下,在一定精度范围内的,尽可能抓住主要因素,并最终落脚于实际应用的目标、条件(工具)与环境的结果。 模型并不是越精确越好、越复杂越好模型并不是越精确越好、越复杂越好。概述 传递函数传递函数是经典控制理论中描述系统动态特性的主要数学模型,它适用于SISO线性定常系统,能便利地处理这一类系统的瞬态响应分析或频率法的分析和设计。 但是但是,对于对于MIMO系统、时变系统和非线性系统系统、时变系统和非线性系统,这这种数学模型就无能为力。种数学模型就无能为力。

7、 传递函数仅能反映系统输入与输出之间传递的线性传递函数仅能反映系统输入与输出之间传递的线性动态特性动态特性,不能反映系统内部的动态变化特性。不能反映系统内部的动态变化特性。 因而是一种对系统的外部动态特性的描述因而是一种对系统的外部动态特性的描述,这就使这就使得它在实际应用中受到很大的限制。得它在实际应用中受到很大的限制。概述 现代控制理论是在引入状态和状态空间概念的基础上发展起来的。 在用状态空间法分析系统时在用状态空间法分析系统时,系统的动态特性是用系统的动态特性是用由状态变量构成的一阶微分方程组来描述的。由状态变量构成的一阶微分方程组来描述的。 它能反映系统的全部独立变量的变化它能反映系

8、统的全部独立变量的变化,从而能同时从而能同时确定系统的全部内部运动状态确定系统的全部内部运动状态,而且还可以方便地而且还可以方便地处理初始条件。处理初始条件。 因而因而,状态空间模型反映了系统动态行为的全部信状态空间模型反映了系统动态行为的全部信息息,是对系统行为的一种完全描述。是对系统行为的一种完全描述。概述 状态空间分析法不仅适用于SISO线性定常系统,也适用于非线性系统、时变系统、MIMO系统以及随机系统等。 因而因而,状态空间分析法适用范围广状态空间分析法适用范围广,对各种不对各种不同的系统同的系统,其数学表达形式简单而且统一。其数学表达形式简单而且统一。 更突出的优点是更突出的优点是

9、,它能够方便地利用数字计它能够方便地利用数字计算机进行运算和求解算机进行运算和求解,甚至直接用计算机进甚至直接用计算机进行实时控制行实时控制,从而显示了它的极大优越性。从而显示了它的极大优越性。概述 本章需解决的问题与难点本章需解决的问题与难点: 基本概念: 状态、状态空间 状态空间模型-状态空间模型及其意义 如何建立状态空间模型 由机理出发由机理出发 由微分方程出发由微分方程出发 由传递函数出发由传递函数出发 由系统结构图出发由系统结构图出发 状态空间变换 特征值、特征向量与特征空间特征值、特征向量与特征空间 状态空间变换状态空间变换 传递函数阵 组合系统的状态空间模型 离散时间动态系统的状

10、态空间描述第二章 控制系统的状态空间描述主要内容: 2.1 状态空间描述的基本概念状态空间描述的基本概念 2.2 状态空间表达式的模拟结构图 2.3 状态空间表达式的建立 2.4 动态方程与传递函数矩阵 2.5 线性离散系统的动态方程及其解2.1 状态空间描述的基本概念 动态(亦称动力学)系统的“状态”这个词的字面意思就是指系统过去、现在将来的运动状况。 正确理解正确理解“状态状态”的定义与涵义的定义与涵义,对掌握状态空间分析方法十对掌握状态空间分析方法十分重要。分重要。 “状态状态”的定义如下。的定义如下。 定义定义2-1 动态系统的状态,是指能够完全描述完全描述系统时间时间域动态行为域动态

11、行为的一个最小变量组最小变量组。 该变量组的每个变量称为状态变量。该变量组的每个变量称为状态变量。 该最小变量组中状态变量的个数称为系统的阶数。该最小变量组中状态变量的个数称为系统的阶数。2.1 状态空间描述的基本概念 “状态”定义的三要素 完全描述完全描述。即给定描述状态的变量组在初始时刻(t=t0)的值和初始时刻后(tt0)的输入,则系统在任何瞬时(tt0)的行为,即系统的状态,就可完全且唯一的确定。 动态时域行为动态时域行为。 最小变量组最小变量组。即描述系统状态的变量组的各分量是相互独立的。 减少变量,描述不全。 增加则一定存在线性相关的变量,冗余的变量,毫无必要。要掌握哦!2.1 状

12、态空间描述的基本概念 若要完全描述n阶系统,则其最小变量组必须由n个变量(即状态变量)所组成,一般记这n个状态变量为x1(t),x2(t), ,xn(t). 若以这若以这n个状态变量为分量个状态变量为分量,构成一个构成一个n维变维变量向量量向量,则称这个向量为状态变量向量则称这个向量为状态变量向量,简称简称为为状态向量状态向量,并可表示如下并可表示如下:1212.nnxxx xxxx 系统内部状态 x1,x2,xn u1 u2 ur y1 y2 ym 图2-1 多输入多输出系统示意图2.1 状态空间描述的基本概念 状态变量状态变量 状态变量是描述系统内部动态特性行为的变量状态变量是描述系统内部

13、动态特性行为的变量。 它可以是能直接测量或观测的量它可以是能直接测量或观测的量,也可以是不能直接测也可以是不能直接测量或观测的量。量或观测的量。 状态矢量(状态向量)状态矢量(状态向量) 如果如果n个状态变量用个状态变量用 表示,并把这些表示,并把这些状态变量看作是矢量状态变量看作是矢量 的分量,则的分量,则 就称为状态就称为状态矢量,记作:矢量,记作: 12,.,nx txtxt tx tx 12,.,Tntx txtxtx2.1 状态空间描述的基本概念 状态空间状态空间 以状态变量以状态变量 为坐为坐标轴所构成的标轴所构成的n维空间,称为状维空间,称为状态空间态空间,记为Rn 。 状态向量

14、的端点在状态空间中的状态向量的端点在状态空间中的位置位置,代表系统在某一时刻的运动代表系统在某一时刻的运动状态。状态。 随着时间的推移,状态不断地变化,tt0各瞬时的状态在状态空间构成一条轨迹,它称为状态轨线。 状态轨线如图2-2所示。 12,.,nx txtxt x1 x2 x(t0) x(t1) x(t2) x(t) 图2-2 二维空间的状态轨线2.1 状态空间描述的基本概念 状态空间模型状态空间模型 状态空间模型是应用状态空间分析法状态空间分析法对动态系统所建立的一种数学模型,它是应用现代控制理论对系统进行分析和综合的基础。 状态空间模型由状态空间模型由 描述系统的动态特性行为的描述系统

15、的动态特性行为的状态方程状态方程和和 描述系统输出变量与状态变量间的变换关系的描述系统输出变量与状态变量间的变换关系的输出方程输出方程所组成。所组成。 下面以一个由电容、电感等储能元件组成的二阶RLC电网络系统为例,说明状态空间模型的建立和形式,然后再进行一般的讨论。2.1 状态空间描述的基本概念 例例 某电网络系统的模型如图2-3所示。 试建立以电压ui为系统输入,电容器两端的电压uC为输出的状态空间模型。 + R - L C + - uC iL ui 图2-3 例2-3的RLC电网络系统q 解 1. 根据系统的内部机理列出各物理量所满足的关系式。根据系统的内部机理列出各物理量所满足的关系式

16、。 对本例,针对RLC网络的回路电压和节点电流关系,列出各电压和电流所满足的方程ddddLLCiCLiRiLuutuiCt2. 选择状态变量。选择状态变量。 状态变量的个数应为独立一阶储能元件(如电感和电容)的个数。 对本例x1(t)=iL, x2(t)=uC3. 将状态变量代入各物理量所满足的方程,整理得一规范形式的一阶矩阵微分方程组-状态方程。 每个状态变量对应一个一阶微分方程,导数项的系数为1,非导数项列写在方程的右边。 对本例,经整理可得如下状态方程1122- /-1/1/1/00ixxR LLLuxxC写成向量与矩阵形式为:212 10 xxxuC122111dd11ddxCtxuL

17、xLxLRtxi4. 列写描述输出变量与状态变量之间关系的输出方程。 对本例其中5. 将上述状态方程和输出方程列写在一起,即为描述系统的状态空间模型的状态空间模型ABCxxuyx 100/ 10/ 1/ 1-/-21CLBCLLRAuuxxCiyux 由上述例子,可总结出状态空间模型的形式为ABCDxxuyxu其中x为n维的状态向量;u为r维的输入向量;y为m维的输出向量;A为nn维的系统矩阵;B为nr维的输入矩阵;C为mn维的输出矩阵;D为mr维的直联矩阵(前馈矩阵,直接转移矩阵)。描述线性系统描述线性系统的主要状态空的主要状态空间模型间模型,切记切记! 对前面引入的状态空间模型的意义,有如

18、下讨论: 状态方程状态方程描述的是系统动态特性, 其决定系统状态变量的动态变化。 输出方程输出方程描述的是输出与系统内部的状态变量的关系。 系统矩阵系统矩阵A表示系统内部各状态变量之间的关联情况, 它主要决定系统的动态特性。 输入矩阵输入矩阵B又称为控制矩阵, 它表示输入对状态变量变化的影响。 输出矩阵输出矩阵C反映状态变量与输出间的作用关系。 直联矩阵直联矩阵D则表示了输入对输出的直接影响,许多系统不存在这种直联关系,即直联矩阵D=0。 上述线性定常连续系统的状态空间模型可推广至 非线性系统、 时变系统。1. 非线性时变系统非线性时变系统( , , )( , , )ttxf x uyg x

19、u其中f(x,u,t)和g(x,u,t)分别为如下n维和m维关于状态向量x、输入向量u和时间t的非线性向量函数f(x,u,t)=f1(x,u,t) f2(x,u,t) fn(x,u,t)g(x,u,t)=g1(x,u,t) g2(x,u,t) gm(x,u,t)2. 非线性系统非线性系统( , )( , )xf x uyg x u其中f(x,u)和g(x,u)分别为n维和m维状态x和输入u的非线性向量函数。 这些非线性函数中不显含时间t,即系统的结构和参数不随时间变化而变化。3. 线性时变系统线性时变系统( )( )( )( )A tB tC tD txxuyxu其中各矩阵为时间t的函数,随时

20、间变化而变化。4. 线性定常系统线性定常系统q 为简便,常将线性时变系统的状态空间模型简记为(A(t),B(t),C(t),D(t). 类似地,线性定常系统的状态空间模型亦可简记为(A,B,C,D). 几种简记符的意义:ABCDxxuyxu( , ,):ABA B CCxxuyx( , ):A BABxxu( ,):AA CC xxyx第二章 控制系统的状态空间描述主要内容: 2.1 状态空间描述的基本概念 2.2状态空间表达式的模拟结构图状态空间表达式的模拟结构图 2.3 状态空间表达式的建立 2.4 动态方程与传递函数矩阵 2.5 线性离散系统的动态方程及其解2.2状态空间表达式的模拟结构

21、图 线性系统的状态空间模型可以用结构图的方式表达出来,以形象说明系统输入、输出和状态之间的信息传递关系。 在采用模拟或数字计算机仿真时在采用模拟或数字计算机仿真时,它是一个强有力它是一个强有力的工具。的工具。 系统结构图主要有三种基本元件系统结构图主要有三种基本元件: 积分器积分器, 加法器加法器, 比例器比例器,其表示符如图2-4所示。图2-4 系统结构图中的三种基本元件 x2 x1 x1+x2 k x(t) x kx ( )x t (a) 积分器 (b) 加法器 (c) 比例器 例 线性时变系统( )( )( )( )A tB tC tD txxuyxu的结构图如图2-5所示。 y x B

22、(t) A(t) C(t) D(t) u + + + + x 图2-5 多输入多输出线性时变系统的结构图 若需要用结构图表示出各状态变量、各输入变量和各输出变量间的信息传递关系,则必须根据实际的状态空间模型,画出各变量间的结构图。 图2-6表示的是状态空间模型如下所示的双输入-双输出线性定常系统的结构图。11112111121221222212221111211112122122221222xaaxbbuxaaxbbuyccxdduyccxddu如何绘制其结构图?图2-6 双输入双输出线性定常系统结构图第二章 控制系统的状态空间描述主要内容: 2.1 状态空间描述的基本概念 2.2 状态空间表

23、达式的模拟结构图 2.3 状态空间表达式的建立状态空间表达式的建立 2.4 动态方程与传递函数矩阵 2.5 线性离散系统的动态方程及其解2.3 状态空间表达式的建立 三个途径求得:由系统方框图来建立,即根据系统各个由系统方框图来建立,即根据系统各个环节的实际连接,写出相应的状态空间环节的实际连接,写出相应的状态空间表达式;(课后自学)表达式;(课后自学)从系统的物理或化学的机理出发进行推导;(自学为主)由描述系统运动过程的高阶微分方程或传递函数予以演化而得。从系统方框图出发建立状态空间表达式 该法是首先将系统的各个环节,变换成相应的模拟结构图,并把每个积分器的输出选作一个状态变量 ,其输入便是

24、相应的 ;然后由模拟图直接写出系统的状态方程和输出方程。ix ix 111KT s u y x=y 11KT ( )x t u 11T 2.3 状态空间表达式的建立 三个途径求得:由系统方框图来建立,即根据系统各个环节的实际连接,写出相应的状态空间表达式;(课后自学)从系统的物理或化学的机理出发进行推从系统的物理或化学的机理出发进行推导;(自学为主)导;(自学为主)由描述系统运动过程的高阶微分方程或传递函数予以演化而得。根据系统机理建立状态空间模型 建立被控对象的数学模型是进行系统分析和综合的第一步,是控制理论和工程的基础. 上一节讨论了由电容和电感两类储能元件以及电阻所上一节讨论了由电容和电

25、感两类储能元件以及电阻所构成的电网络系统的状态空间模型的建立,其依据为构成的电网络系统的状态空间模型的建立,其依据为各电气元件的物理机理及电网络分析方法各电气元件的物理机理及电网络分析方法. 这种根据系统的物理机理建立对象的数学模型的方法这种根据系统的物理机理建立对象的数学模型的方法称为机理建模称为机理建模. 机理建模主要根据系统的物料和能量机理建模主要根据系统的物料和能量(电压、电流、电压、电流、力和热量等力和热量等)在储存和传递中的动态平衡关系在储存和传递中的动态平衡关系,以及各以及各环节、元件的各物理量之间的关系环节、元件的各物理量之间的关系,如电感的电压和如电感的电压和电流满足的动态关

26、系电流满足的动态关系. 在实际工程系统中,许多过程和元件都具有储存和传递能量 (或信息)的能力。例如, 机械动力学系统中的弹簧和运动中的质量体都储存有机械动力学系统中的弹簧和运动中的质量体都储存有能量并能通过某种形式传递能量并能通过某种形式传递; 化工热力学系统中的物质中的热量的储存与传递化工热力学系统中的物质中的热量的储存与传递.l对这些系统,根据其物理和化学变化的机理,由相应描述这些变化的物理和化学的定理、定律和规律等,可得系统各物理量之间所满足的动静态关系式.因此,在选择适宜的状态变量后,可建立系统的状态空间模型. 建立动态系统数学模型的主要机理/依据有: 电网络系统中回路和节点的电压和

27、电流平衡关系电网络系统中回路和节点的电压和电流平衡关系,电感和电容等储能元件的电压和电流之间的动态关电感和电容等储能元件的电压和电流之间的动态关系系. 机械动力学系统中的牛顿第二定律机械动力学系统中的牛顿第二定律,弹性体和阻尼弹性体和阻尼体的力与位移、速度间的关系体的力与位移、速度间的关系. 对旋转运动对旋转运动,则相应的为转矩、角位移和角速度则相应的为转矩、角位移和角速度. 化工热力学系统中的热量的传递与储存化工热力学系统中的热量的传递与储存,化工反应化工反应工程系统中参加反应的物料的传递和平衡关系工程系统中参加反应的物料的传递和平衡关系. 经济系统中的投入产出方程。经济系统中的投入产出方程

28、。 建立状态空间模型的关键在于状态变量的选取,它是建立状态空间模型的前提 状态变量的主要选取办法 系统储能元件的输出系统储能元件的输出 系统输出及其输出变量的各阶导数系统输出及其输出变量的各阶导数 上述状态变量的数学投影(使系统状态方程成上述状态变量的数学投影(使系统状态方程成为某种标准形式的变量)为某种标准形式的变量) 下面通过常见的 刚体力学系统、刚体力学系统、 流体力学系统、流体力学系统、 典型化工典型化工(热工热工)过程过程 机电能量转换系统机电能量转换系统讨论如何建立状态空间模型1. 刚体动力学系统的状态空间描述刚体动力学系统的状态空间描述 图2-7表示由弹簧、质量体、阻尼器组成的刚体动力学系统的物理模型. 试建立以外力u(t)为系统输入,质量体位移y(t)为输出的状态空间模型. m kfuy图2-7 弹簧-质量体-阻尼器系统 q 解 对许多实际系统,由于对系统的各种物理量的初始值或绝对值难于了解,一般将对物理量仅考虑在其相对于初始状况之后的相对值。 对本例的刚体力学系统,一般先假设在外力u(t)作用于小车之前,小车已处于平衡态。 下面仅考虑外力加入后,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论