版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2015-2016第一学期随机过程第二次上机实验报告实验目的:通过随机过程上机实验,熟悉Monte Carlo计算机随机模拟方法,熟悉Matlab的运行环境,了解随机模拟的原理,熟悉随机过程的编码规律即各种随机过程的实现方法,加深对随机过程的理解。上机内容:(1)模拟随机游走。(2)模拟Brown运动的样本轨道。(3)模拟Markov过程。实验步骤:(1)给出随机游走的样本轨道模拟结果,并附带模拟程序。 一维情形%一维简单随机游走%“从0开始,向前跳一步的概率为p,向后跳一步的概率为1p” n=50;p=0.5; y=0 cumsum(2.*(rand(1,n-1)<=p)-1); %
2、n步。 plot(0:n-1,y); %画出折线图如下。%一维随机步长的随机游动 %选取任一零均值的分布为步长, 比如,均匀分布。 n=50;x=rand(1,n)-1/2; y=0 (cumsum(x)-1); plot(0:n,y);二维情形%在(u, v)坐标平面上画出点(u(k), v(k), k=1:n, 其中(u(k)和(v(k) 是一维随机游动。例%子程序是用四种不同颜色画了同一随机游动的四条轨道。n=100000; colorstr='b' 'r' 'g' 'y' for k=1:4 z=2.*(rand(2,n)
3、<0.5)-1; x=zeros(1,2); cumsum(z'); col=colorstr(k); plot(x(:,1),x(:,2),col); hold on end grid %三维随机游走 ranwalk3d p=0.5; n=10000; colorstr='b' 'r' 'g' 'y' for k=1:4 z=2.*(rand(3,n)<=p)-1; x=zeros(1,3); cumsum(z'); col=colorstr(k); plot3(x(:,1),x(:,2),x(:,3
4、),col); hold on end grid(2) 给出一维,二维Brown运动和Poisson过程的模拟结果,并附带模拟程序,没有结果的也要把程序记录下来。一维Brown% 这是连续情形的对称随机游动,每个增量W(s+t)-W(s)是高斯分布N(0, t),不相交区间上的增量是独立的。典型的模拟它方法是用离散时间的随机游动来逼近。 n=1000; dt=1; y=0 cumsum(dt0.5.*randn(1,n); % 标准布朗运动。 plot(0:n,y);二维Brownnpoints = 5000; dt = 1; bm = cumsum(zeros(1, 3); dt0.5*ra
5、ndn(npoints-1, 3); figure(1); plot(bm(:, 1), bm(:, 2), 'k'); pcol = (bm-repmat(min(bm), npoints, 1)./ . repmat(max(bm)-min(bm), npoints, 1); hold on; scatter(bm(:, 1), bm(:, 2), . 10, pcol, 'filled'); grid on; hold off;三维Brown npoints = 5000; dt = 1; bm = cumsum(zeros(1, 3); dt0.5*ra
6、ndn(npoints-1, 3); figure(1); plot3(bm(:, 1), bm(:, 2), bm(:, 3), 'k'); pcol = (bm-repmat(min(bm), npoints, 1)./ . repmat(max(bm)-min(bm), npoints, 1); hold on; scatter3(bm(:, 1), bm(:, 2), bm(:, 3), . 10, pcol, 'filled'); grid on; hold off;%泊松过程的模拟、检验及参数估计syms Un X S;n=10;%生成n*n个随机数
7、r=1;%参数temp=0;tem=0;Un=rand(n,1);%共产生n*n个随机数for i=1:1:n X(i)=-log(Un(i)/r;endX=subs(X);for i=1:1:n for j=1:1:i temp=temp+X(j); end S(i)=temp; temp=0;endS=subs(S);%检验泊松过程使用第四条for i=1:1:n tem=tem+S(i);endsigmaN=tem;T=S(n);alpha=0.05;%置信水平p=sigmaN/T;p1=(1/2)*(n-1.96*(n/3)(1/2);p2=(1/2)*(n+1.96*(n/3)(1/
8、2);c1=subs(p-p1)c2=subs(p-p2)if (c1<=0&c2>=0)|(c1>=0&c2<=0) disp('这是一个泊松过程!') %参数估计使用极大似然估计 r_=subs(n/T); if abs(subs(r_-r)<0.1 disp('参数估计正确!') disp('参数估计值为:') r_ end %绘制轨迹 y=0; x=0:0.001:subs(S(1); plot(x,y) for k=1:1:n y=k; x=subs(S(k):0.001:subs(S(k+
9、1); hold on plot(x,y) endelse disp('这不是一个泊松过程!')end%二维poisson2d lambda=100; nmb=poissrnd(lambda) x=rand(1,nmb); y=rand(1,nmb); grid scatter(x,y,5,5.*rand(1,nmb);%三维poisson3d%单位体积的泊松点数强度为lambda lambda=100; nmb=poissrnd(lambda) x=rand(1,nmb); y=rand(1,nmb); z=rand(1,nmb); grid scatter3(x,y,z,5
10、,5.*rand(1,nmb);(3)Markov过程的模拟结果。离散服务系统中的缓冲动力学%离散服务系统中的缓冲动力学m=200; p=0.2; N=zeros(1,m); %初始化缓冲区 A=geornd(1-p,1,m); %生成到达序列模型, 比如,几何分布 for n=2:m N(n)=N(n-1)+A(n)-(N(n-1)+A(n)>=1); end stairs(0:m-1),N);M/M/1模型% tjump, systsize = simmm1(n, lambda, mu) % Inputs: n - number of jumps % lambda - arrival
11、 intensity % mu - intensity of the service times % Outputs: tjump - cumulative jump times % systsize - system size % set default parameter values if ommited :nargin=0nargin=0; if (nargin=0) n=500; lambda=0.8; mu=1; end i=0; %initial value, start on level i tjump(1)=0; %start at time 0 systsize(1)=i;
12、 %at time 0: level i for k=2:n if i=0 mutemp=0; else mutemp=mu; end time=-log(rand)/(lambda+mutemp); % Inter-step times: % Exp(lambda+mu)-distributed if rand<lambda/(lambda+mutemp) i=i+1; %jump up: a customer arrives else i=i-1; %jump down: a customer is departing end %if systsize(k)=i; %system s
13、ize at time i tjump(k)=time; end %for i tjump=cumsum(tjump); %cumulative jump times stairs(tjump,systsize); :nargin不为0时nargin=2; if (nargin=0) n=500; lambda=0.8; mu=1; end i=0; %initial value, start on level i tjump(1)=0; %start at time 0 systsize(1)=i; %at time 0: level i for k=2:n if i=0 mutemp=0;
14、 else mutemp=mu; end time=-log(rand)/(lambda+mutemp); % Inter-step times: % Exp(lambda+mu)-distributed if rand<lambda/(lambda+mutemp) i=i+1; %jump up: a customer arrives else i=i-1; %jump down: a customer is departing end %if systsize(k)=i; %system size at time i tjump(k)=time; end %for i tjump=c
15、umsum(tjump); %cumulative jump times stairs(tjump,systsize); M/D/1系统% function jumptimes, systsize = simmd1(tmax, lambda) % SIMMD1 simulate a M/D/1 queueing system. Poisson arrivals % of intensity lambda, deterministic service times S=1. % jumptimes, systsize = simmd1(tmax, lambda) % Inputs: tmax -
16、simulation interval % lambda - arrival intensity % Outputs: jumptimes - time points of arrivals or departures % systsize - system size in M/D/1 queue % systtime - system times % Authors: % v1.2 07-Oct-02 % set default parameter values if ommited :nargin=0nargin=0;if (nargin=0) tmax=1500; lambda=0.95
17、; end arrtime=-log(rand)/lambda; % Poisson arrivals i=1; while (min(arrtime(i,:)<=tmax) arrtime = arrtime; arrtime(i, :)-log(rand)/lambda; i=i+1; end n=length(arrtime); % arrival times t_1,.t_n arrsubtr=arrtime-(0:n-1)' % t_k-(k-1) arrmatrix=arrsubtr*ones(1,n); deptime=(1:n)+max(triu(arrmatri
18、x); % departure times %u_k=k+max(t_1,.,t_k-k+1) B=ones(n,1) arrtime ; -ones(n,1) deptime' Bsort=sortrows(B,2); % sort jumps in order jumps=Bsort(:,1); jumptimes=0;Bsort(:,2); systsize=0;cumsum(jumps); % M/D/1 process systtime=deptime-arrtime' % system times % plot a histogram of system times
19、 hist(systtime,30); :nargin不为0% function jumptimes, systsize = simmd1(tmax, lambda) % SIMMD1 simulate a M/D/1 queueing system. Poisson arrivals % of intensity lambda, deterministic service times S=1. % % jumptimes, systsize = simmd1(tmax, lambda) % % Inputs: tmax - simulation interval % lambda - arr
20、ival intensity % Outputs: jumptimes - time points of arrivals or departures % systsize - system size in M/D/1 queue % systtime - system times % Authors: % v1.2 07-Oct-02 % set default parameter values if ommited nargin=2;if (nargin=0) tmax=1500; lambda=0.95; end arrtime=-log(rand)/lambda; % Poisson
21、arrivals i=1; while (min(arrtime(i,:)<=tmax) arrtime = arrtime; arrtime(i, :)-log(rand)/lambda; i=i+1; end n=length(arrtime); % arrival times t_1,.t_n arrsubtr=arrtime-(0:n-1)' % t_k-(k-1) arrmatrix=arrsubtr*ones(1,n); deptime=(1:n)+max(triu(arrmatrix); % departure times %u_k=k+max(t_1,.,t_k-
22、k+1) B=ones(n,1) arrtime ; -ones(n,1) deptime' Bsort=sortrows(B,2); % sort jumps in order jumps=Bsort(:,1); jumptimes=0;Bsort(:,2); systsize=0;cumsum(jumps); % M/D/1 process systtime=deptime-arrtime' % system times % plot a histogram of system times hist(systtime,30); M/G/infinity系统%function
23、 jumptimes, systsize = simmginfty(tmax, lambda) % SIMMGINFTY simulate a M/G/infinity queueing system. Arrivals are % a homogeneous Poisson process of intensity lambda. Service times % Pareto distributed (can be modified). % jumptimes, systsize = simmginfty(tmax, lambda) % % Inputs: tmax - simulation
24、 interval % lambda - arrival intensity % Outputs: jumptimes - times of state changes in the system % systsize - number of customers in system % See SIMSTMGINFTY, SIMGEOD1, SIMMM1, SIMMD1, SIMMG1. % set default parameter values if ommited : nargin=0nargin=0; if (nargin=0) tmax=1500; lambda=1; end % g
25、enerate Poisson arrivals % the number of points is Poisson-distributed npoints = poissrnd(lambda*tmax); % conditioned that number of points is N, % the points are uniformly distributed if (npoints>0) arrt = sort(rand(npoints, 1)*tmax); else arrt = ; end % uncomment if not available POISSONRND % g
26、enerate Poisson arrivals % arrt=-log(rand)/lambda; % i=1; % while (min(arrt(i,:)<=tmax) % arrt = arrt; arrt(i, :)-log(rand)/lambda; % i=i+1; % end % npoints=length(arrt); % arrival times t_1,.,t_n % servt=50.*rand(n,1); % uniform service times s_1,.,s_k alpha = 1.5; % Pareto service times servt =
27、 rand(-1/(alpha-1)-1; % stationary renewal process servt = servt; rand(npoints-1,1).(-1/alpha)-1; servt = 10.*servt; % arbitrary choice of mean dept = arrt+servt; % departure times % Output is system size process N. B = ones(npoints, 1) arrt; -ones(npoints, 1) dept; Bsort = sortrows(B, 2); % sort ju
28、mps in order jumps = Bsort(:, 1); jumptimes = 0; Bsort(:, 2); systsize = 0; cumsum(jumps); % M/G/infinity system size % process stairs(jumptimes, systsize); xmax = max(systsize)+5; axis(0 tmax 0 xmax); grid : nargin不为0时%function jumptimes, systsize = simmginfty(tmax, lambda) % SIMMGINFTY simulate a
29、M/G/infinity queueing system. Arrivals are % a homogeneous Poisson process of intensity lambda. Service times % Pareto distributed (can be modified). % jumptimes, systsize = simmginfty(tmax, lambda) % % Inputs: tmax - simulation interval % lambda - arrival intensity % Outputs: jumptimes - times of s
30、tate changes in the system % systsize - number of customers in system % See SIMSTMGINFTY, SIMGEOD1, SIMMM1, SIMMD1, SIMMG1. % set default parameter values if ommited nargin=2; if (nargin=0) tmax=1500; lambda=1; end % generate Poisson arrivals % the number of points is Poisson-distributed npoints = poissrnd(lambda*tmax); % conditioned that number of points is N, % the points are uniformly distributed if
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 转岗员工安全培训
- 小儿外科常见疾病及护理
- 财务培训毕业论文
- 培训机构处理家长投诉
- 14.3 能量的转化和守恒 (4大题型)(含答案解析)
- 辽宁省锦州市2024-2025学年八年级上学期数学10月月考试题(含答案)
- 初中七年级英语上学期期中考前测试卷(人教版)含答案解析
- 2024年江苏省淮安市中考语文试题卷(含答案解析)
- T-YNRZ 022-2024 橡胶林下珠芽黄魔芋生态种植技术规程
- 岩土工程单选题100道及答案解析
- 时代乐章第一课城市名片 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 期中测试题-2024-2025学年道德与法治六年级上册统编版
- 4.1 10的再认识-一年级上册数学课件
- 中国融通笔试
- (完整版)建筑工程设计文件编制深度规定(2016)
- ALC板工程施工组织设计方案
- 年柴油原油换热器设计处理量27215;05吨年柴油原油换热器设计
- 理论力学试题题目含参考答案
- 《红楼梦》21-25内容简介ppt课件
- 设计质量保证体系及措施(完整版)
- 吉林省延边州高三下学期质量检测理科综合(朝语)试题及答案
评论
0/150
提交评论