版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二元一次方程组一、知识点总结1、二元一次方程:含有两个未知数(x和y),并且含有未知数的项的次数都是,像这样的整式方程叫做二元一次方程,它的一般形式是.2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解. 【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数的项的次数都是,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组.4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解.【二元一次方程组解的情况:无解,例如:,;有且只有一组解,例如:;有无数组解,例如:5、二元一
2、次方程组的解法:代入消元法和加减消元法。6、三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数的项的次数都是1,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组。解三元一次方程组的关键也是“消元”:三元二元一元7、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步: (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,; (2)设:找出能够表示题意两个相等关系;并用字母表示其中的两个未知数 (3)列:根据这两个相等关系列出必需的代数式,从而列出方程组; (4)解:解这个方程组,求出两个未知数的值; (5)答:在对求出的方程的解做出
3、是否合理判断的基础上,写出答案.二、典型例题分析例1、若方程是关于的二元一次方程,求、的值.例2、 将方程变形,用含有的代数式表示.例3、 方程在正整数范围内有哪几组解?例4、 若是方程组的解,求的值.例5、 已知是关于的二元一次方程,求的值.例6、 二元一次方程组的解x,y的值相等,求k例7:(1)用代入消元法解方程组: (2)、用加减法解二元一次方程组: 例8、 若关于X,y的二元一次方程组x+y=5k,x-y=9k的解也是二元一次方程2x+3y=6的解,求k的值。三、跟踪训练知识点1:二元一次方程及其解1、下列各式是二元一次方程的是(). 2、若是关于的二元一次方程的一个(组)解,则的值
4、为( ) 3、二元一次方程在正整数范围内的解有( ).无数个 两个 三个 四个4、已知在方程中,若用含有的代数式表示,则 ,用含有的代数式表示,则 。5、若,则 。知识点2:二元一次方程组及其解1、有下列方程组:(1) (2) (3) (4)其中说法正确的是( )只有()、(3)是二元一次方程组 只有()、()是二元一次方程组只有()是二元一次方程组 只有()不是二元一次方程组2、下列哪组数是二元一次方程组的解( ) 3、若方程组有无数组解,则、的值分别为( ) a=6,b=-1 a=3,b=-24、写出一个以 为解的二元一次方程组 ;写出以为解的一个二元一次方程 .5、已知是二元一次方程组的解,则的值为 。6、如果且那么的值是 .7、若与是同类项,则 (提高题)1、已知关于的方程组的解满足求式子的值.2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二年级语文教案前
- 《红托竹荪鲜品贮运技术规程》征求意见稿
- 上海市县(2024年-2025年小学五年级语文)人教版期末考试(下学期)试卷及答案
- 一年级数学计算题专项练习1000题集锦
- 三年级语文上册教案
- 江苏省泰州市泰兴市2024-2025学年九年级上学期期中英语试卷(含答案解析)
- 【初中物理】《运动的描述》教学课件-2024-2025学年人教版(2024)八年级物理上册
- 护目镜市场需求与消费特点分析
- 拉力器市场发展预测和趋势分析
- 制药加工工业机器产品供应链分析
- 污染物的生物效应检测
- (4.3.5)-菊花中医药学概论
- 2023年国家能源集团神东煤炭集团公司招聘笔试题库及答案解析
- GB/T 5210-2006色漆和清漆拉开法附着力试验
- GB/T 40019-2021基础制造工艺通用元数据
- 2022年修订《农产品质量安全法》课件全文
- GB 29837-2013火灾探测报警产品的维修保养与报废
- 问题解决型QC培训课件
- 医学课件-颞骨的解剖教学课件
- 西气东输计量交接凭证填报培训PPT-场站课件
- 立定跳远说课课件
评论
0/150
提交评论