语音信号处理实验指导书._第1页
语音信号处理实验指导书._第2页
语音信号处理实验指导书._第3页
语音信号处理实验指导书._第4页
语音信号处理实验指导书._第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、语音信号处理实验指导书实验一 语音信号采集与简单处理一、 实验目的、要求(1)掌握语音信号采集的方法(2)掌握一种语音信号基音周期提取方法(3)掌握短时过零率计算方法(4)了解Matlab的编程方法二、 实验原理基本概念:(a)短时过零率:短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。其中sgn.为符号函数 短时平均过零的作用1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。2.从背景噪声中找出是否有语音

2、,以及语音的起点。(b)基音周期基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词

3、发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容易。语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。基音周期变化范围大,从老年男性的50Hz到儿童和女性的450Hz,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个

4、完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT、谱图法、小波法等等。三、使用仪器、材料微机(带声卡)、耳机,话筒。四、 实验步骤(1)语音信号的采集利用Windows 语音采集工具采集语音信号,将数据保存wav格式。采集一组浊音信号和一组清音信号,信号的长度大于3s。(2)采用短时相关函数计算语音信号浊音基

5、音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。(3)计算短时过零率,清音和浊音的短时过零率有何区别。五、实验过程原始记录(数据,图表,计算)短时过零率短时相关函数六、实验结果,及分析 图一 清浊音 图二 浊音自相关函数图三 清音自相关函数实验结果分析:清音短时过零率高,浊音过零率低。浊音、清音自相关函数可以看出,浊音存在基音周期,清音不存在基音周期。浊音的基音周期是自相关函数峰值之间的时间差。七、实验参考程序1段时能量a1=zeros(1,620);K=450;R=zeros(1,250); duanshnl=0;maxx=0;speech=zeros(1,1000);

6、sp1=wavread('D:语音信号处理试验a.wav');%8000采样频率maxx=max(sp1);speech(1:1000)=sp1(1:1000); duanshnl=speech(1:1000)*speech(1:1000)'duanshnl=duanshnl/(maxx2)plot(sp1(1:400);hold onsp=wavread('D:语音信号处理试验s.wav');%8000采样频率speech(1:1000)=sp(1:1000);qduanshnl=speech(1:1000)*speech(1:1000)'qd

7、uanshnl=qduanshnl/(maxx2)plot(sp(1:400),'r')2 短时过零率close alla1=zeros(1,620);K=450;R=zeros(1,250);duanshnl=0;maxx=0;speech=zeros(1,1000);sp1=wavread('D:语音信号处理试验a.wav');%11000采样频率sp=wavread('D:语音信号处理试验f.wav');%11000采样频率L=mean(sp);sp=sp-L;L2=mean(sp1);sp1=sp1-L2;%以下程序计算短时过零率m1=0

8、;m2=0;for i=1:2000 if sp1(i)>0 spp1(i)=1; else spp1(i)=-1; endendfor i=1:2000 if sp(i)>0 spp(i)=1; else spp(i)=-1; endendfor i=2:2000 m1=m1+0.5*abs(spp1(i)-spp1(i-1); m2=m2+0.5*abs(spp(i)-spp(i-1); % m2 >> m1endplot(sp1(1:2000),'r');hold onplot(sp(1:2000);3 相关函数法计算基音周期a1=zeros(1,

9、620);K=450;R=zeros(1,250);sp=wavread('e:Elettera1.wav');%11000采样频率for i=1:250 for j=1:601-1-i R(i)=R(i)+sp(j)*sp(j+i); endendplot(R/14)hold onR=zeros(1,250);sp=wavread('e:Eletterf1.wav');%11000采样频率f1=sp(3300:4000);%11000采样频率for i=1:250 for j=1:601-1-i R(i)=R(i)+f1(j)*f1(j+i); endendp

10、lot(R/14,'r')4 倒谱法计算基音周期close alla1=zeros(1,620);K=500;sp=wavread('D:a1.wav');%11000采样频率sound=zeros(1,K);speech=zeros(1,K);tt=zeros(1,K);hanning=zeros(1,K);for number=1:K hanning(number)=(1/2)*(1-cos(2*pi)*(number-1)/(K-1);endsound=sp(K:2*K-1);tt=abs(fft(sound(1:K);for i=1:Kspeech(i)

11、=logm(tt(i);endspeech=real(ifft(speech);plot(speech,'g')hold onsound=sound.*hanning'tt=abs(fft(sound(1:K);for i=1:Kspeech(i)=logm(tt(i);endspeech=real(ifft(speech);plot(speech,'r');sp=wavread('D:f1.wav');%11000采样频率f1=sp(3000:4000);%11000采样频率%f1=sp(K:4000);sound=f1(K:2*K-1

12、);tt=abs(fft(sound(1:K);for i=1:Kspeech(i)=logm(tt(i);endspeech=real(ifft(speech);figureplot(speech,'g')hold onsound=sound.*hanning'tt=abs(fft(sound(1:K);for i=1:Kspeech(i)=logm(tt(i);endspeech=real(ifft(speech);plot(speech,'r');实验二 语音信号的频域处理一、 实验目的、要求(1)掌握语音信号频域分析方法(2)了解语音信号频域的特

13、点(3)了解谱减法作为频域语音增强的原理与编程实现(3)了解谱减法的缺点,并分析产生该缺点的原因二、实验原理语音虽然是一个时变、非平稳的随机过程。但在短时间内可近似看作是平稳的。因此如果能从带噪语音的短时谱中估计出“纯净”语音的短时谱,即可达到语音增强的目的。由于噪声也是随机过程,因此这种估计只能建立在统计模型基础上。利用人耳感知对语音频谱分量的相位不敏感的特性,这类语音增强算法主要针对短时谱的幅度估计。短时话幅度估计概述 设一帧加窗后的带噪语音为 (2.1) 其中为纯净语音,假设为平稳加性高斯噪声。 将在一组基上展开,使展对系数为各不相关的随机变量。设的相关函数为,由KL展开得知满足 (2.

14、2) 则的展开式为 (2.3) 如果的相关长度小于帧长N,则的近似函数为 (2.4) 可见的展开过程实际上相当于离散博里叶交换,其展开系数(为傅里叶变换系数。由,则有:。 其中、分别为、及的傅里叶交换系数。由于假设噪声是高斯分布的,其傅里叶系数相当于多个高斯样本的加权和,故可认为仍然为高斯分布。其均值为0,方差可通过无语音时对噪声的分析而获得。语音增强的任务就是利用已知的噪声功率谱信息,从中估计出。由于人耳对相位不敏感,故只需估计出,然后借用带噪语音的相位,进行傅里叶逆变换就可得到增强的语音。基于短时谱幅度估计的方法的原理图如图2.1所示。FFT幅度谱 估计器噪声特性相位s(n)IFFT y(

15、n)=s(n)+d(n)图2.1 短时谱估计原理图在短时谱幅(STSA)估计基础上,人们提出了许多语音增强算法。基本思想是利用输入带噪语音短时谱幅来估计清洁语音短时谱幅,结合带噪语音相位信息,得到增强信号。运用短时傅里叶变换(STFT)和重叠相加是短时谱估计技术中最常用的方法。输入信号的短时谱幅与一个修正因子相乘,得到增强信号谱幅度(通常修正因子与噪声信号谱幅估计密切相关);或将含噪语音谱幅减去噪声谱幅估计,得到增强信号谱幅,这些方法统称为相减类型算法(subtractivetype algorithms)。噪声谱幅估计可以通过有声、无声检测获取。一般认为噪声与信号不相关,增强信号谱幅是清洁语

16、音信号的谱幅估计。通常假设人耳对含噪语音相位产生的畸变不敏感,所以进行IDFT恢复成时域信号时,含噪语音的相位一般不作处理。三、使用仪器、材料微机(带声卡)、耳机,话筒。四、 实验步骤(1) 分析含噪语音信号的频谱(幅度谱和相位谱)(2) 获取噪声信号频谱(幅度谱)(3) 对含噪语音信号进行分帧并进行加窗处理(4) 将含噪语音信号谱和噪声谱作为输入,进行谱减法(5) 回复增强语音信号帧.(6) 对比输入信号与增强信号波形,分析算法对其产生的影响.五、实验过程原始记录(数据,图表,计算)假设为含噪语音离散时间序列,由清洁语音信号和非相关加性噪声信号组成。可表示为 (2.5)将输入信号按帧处理,前

17、后帧之间重叠(一般为50%),对每帧含噪语音进行加窗处理,然后进行FFT变换,变换到频率域。含噪语音的能量谱可以表示为 (2.6)其中为 (2.7)其中为含噪语音的相位。由于没法直接得到含噪语音中噪声能量谱,一般将无声阶段的数帧噪声信号进行能量谱加权平均得到噪声能量谱估计。假设噪声与语音信号不相关,语音能量谱估计为 (2.8)其中清洁语音能量谱估计由含噪语音能量谱减去噪声能量谱估计得到。由于噪声能量谱估计与含噪语音中噪声能量谱之间存在差异,式(3.4)可能出现负值,为了避免能量谱出现负值,将这些负值设为零,这一处理称为半波整流(half-wave rectification)。通过半波整流,清

18、洁语音能量谱估计可表示为 (2.9)结合含噪语音相位信息,通过逆离散傅里叶变换(IDFT)得到时域清洁语音信号的估计信号。 IDFT() (2.10)其中增强语音信号频谱也可以通过时变滤波器重建 (2.11)式中时变滤波器(或称为增益函数)可表示为 (2.12)六:实验结果,及分析(a) 原始含噪语音(b) 谱相减增强语音(c) 原始含噪语音(d) 谱相减增强语音 图2.2 谱减法结果分析实验结果:图2.2中(a),(c)为不同信噪比输入含噪语音信号,图2.2中(b),(d)为对应增强语音信号。当信噪比较低时,降噪效果较差。并且引入音乐噪声。算法缺陷分析:(1)不可避免的引入音乐噪声。要有效地

19、滤除含噪语音中的噪声,需要准确地估计含噪语音中噪声的频谱。噪声谱估计越准确,增强信号谱中音乐噪声越小。然而,由于不能直接得到噪声谱,在绝大多数谱相减算法中,通过加权平均无声阶段噪声谱得到噪声谱估计,这种噪声谱估计与含噪语音中的瞬时噪声谱存在差异,噪声平稳性越差,差异越大,由于这种差异的存在,谱相减不可避免地引入音乐噪声。(2) 半波、全波整流式(3.4)中负能量值的产生是由于噪声谱估计发生了错误。这些负值用半波整流(被设定为0)或全波整流(被设定为绝对值),这样处理并没有纠正这种错误,可能导致时域信号更进一步的失真。(3) 用含噪语音的相位作为增强语音的相位在生成增强时域信号时,含噪语音的相位

20、并没有作任何修改。这是基于这样一个事实,相位的失真对语音质量下降造成的影响不大。当信噪比比较高(>5dB)时,相位失真确实对语音质量的影响不大,然而,当信噪比较低时(<0dB)这种由于相位失真造成的语音质量下降是可以感觉得到的。七、实验参考程序代码谱相减原程序代码hanning=zeros(1,256);speech=zeros(1,32000);dd=wavread('D:语音信号处理实验2noise.wav');%噪声;sp=wavread('D:语音信号处理实验2speech.wav');%纯语音;hanning=zeros(1,256);no

21、ise=dd(10000:45000);speech=sp(25000:60000);e2=noise+speech;szeros=zeros(1,32000);soutput1=zeros(1,32000);j=sqrt(-1); a=3,b=0.01;Snoise=zeros(1,256);phase=zeros(1,256);for n=1:256 hanning(n)=(1/2)*(1-cos(2*pi)*(n-1)/255);end% to get noise spectral Noise=zeros(1,256);Noise1=zeros(1,256);for i=1:3Noise

22、1(1:256)=abs(fft(e2(1+i*256:256*(i+1).*hanning');Noise=Noise+Noise1/3;end% spectral subtraction algrithm for i=1:245 %第i帧 snoise=e2(i-1)*128+1:(i-1)*128+256).*hanning' phase=angle(fft(snoise); % to get noisy signal spectral phase Snoise=abs(fft(snoise); % to get noisy signal spectral amplitu

23、de for n=1:256 if(Snoise(n)2-Noise(n)2)<0 %the power of enhanced speech must be positive Sout0(n)=0.1*Snoise(n); else Sout0(n)=(Snoise(n)2-(Noise(n)*1.5)2)0.5; %power type spectral subtraction end S0(n)=Sout0(n)*(cos(phase(n)+j*sin(phase(n); % to get enhanced speech spectral amplitude end sout0=i

24、fft(S0); szeros(i-1)*128+1):(i-1)*128+256)=real(sout0); soutput1=soutput1+szeros; szeros=zeros(1,32000);end%the following is for SNR calculationsp_energe=zeros(1,256);sn_energe=zeros(1,256);SN=zeros(1,256);in_SNR1=zeros(1,125);out_SNR1=zeros(1,125);snoise=zeros(1,256);for i=1:240 snoise=speech(i-1)*

25、128+1:(i-1)*128+256).*hanning'%第i帧清洁语音存放到snoise SN=noise(i-1)*128+1:(i-1)*128+256).*hanning' %第i帧清洁语音存放到SN %in_SNR1(i) sp_energe(i)=snoise(1:256)'*snoise(1:256);%第i帧清洁语音snoise的能量存放到sp_energe(i) sn_energe(i)=SN(1:256)'*SN(1:256);%第i帧皂声SN的能量存放到sn_energe(i) in_SNR1(i)=10*log10(sp_energe

26、(i)/sn_energe(i);%第i帧含噪语音信号输入信噪比in_SNR1(i) SN=soutput1(i-1)*128+1:(i-1)*128+256).*hanning; %第i帧输出信号存放SN sn_energe1(i)=SN(1:256)*SN(1:256)'%第i帧输出信号SN能量 out_SNR1(i)=10*log10(sp_energe(i)/abs(sn_energe1(i)-sp_energe(i);%第i帧增强信号输出信噪比endplot(e2);hold onplot(soutput1,'r');plot(speech,'g

27、9;); figure plot(in_SNR1) hold on plot(out_SNR1,'r')figureplot(hanning); %sound(speech);%sound(e2);sound(soutput1);实验三 语音信号进行倒谱分析一、 实验目的、要求1 理解倒谱分析的作用2 掌握倒谱分析求基音周期的方法3 了解LPC倒谱分析方法二、实验原理1倒谱分析原理同态信号处理也称为同态滤波,实现将卷积关系变换为求和关系的分离处理,即解卷。如进行如下3步处理对于语音信号进行解卷,可将语音信号的声门激励信息及声道响应信息分离开来,从而求得声道共振特征和基音周期,用

28、于语音编码、合成和识别。同态信号处理的基本原理(1)第一个子系统D*(特征系统)完成将卷积信号转化为加性信号的运算。和 信号也均是时域序列,但它们所处的离散时域显然不同于x(n)所处的离散时域,故把它称之为复倒频谱域。是x(n)的复倒频谱,简称为复倒谱,有时也称为对数复倒谱。复倒谱具体计算公式其中倒谱计算公式为:2 线性预测原理线性预测分析的基本思想由于语音样点之间存在相关性,所以可以用过去的样点值来预测现在或未来的样点值。通过使实际语音抽样和线性预测抽样之间的误差在某个准则下达到最小值来决定唯一的一组预测系数,而这组系数就能反映语音信号的特性,可以作为语音信号特征参数来用于语音编码、语音合成

29、和语音识别等应用中去。线性预测分析的基本原理每个采样值由前面的p个采样值线性组合所构成。记为x¢(n),有:要提高预测精度,就是要预测系数的取值使e(n)最小。理论上通常采用均方误差Ee2(n)最小的准则。根据e(n)均方误差最小的原则来求解,有三种方法:自相关法(Levinson-Durbin算法)、协方差法和格型合成滤波算法。自相关法,就是先解出Yule-Walker 方程,再计算G。Levinson-Durbin算法是自相关算法中的一种,形成递推算法。三、使用仪器、材料微机(带声卡)、耳机,话筒。四、 实验步骤(1)采集语音(浊音,轻音)信号(2)分帧计算语音信号倒谱(3)倒谱

30、作FFT并加短时窗,取大于25以上的样值,进行IFFT,得到基音周期的倒谱。(3)运用Levinson-Durbin计算一帧语音信号线形预测系数(4)对该帧语音信号进行逆滤波处理(5)对逆滤波后的信号进行倒谱分析确定基音周期五、实验过程原始记录(数据,图表,计算)1倒谱计算公式为:2线形预测系数计算公式为:1) 2) 3) 4) 5) if i<p go to 1)6) 1£j£pLPC倒谱流程如下六:实验结果,及分析倒谱分析LPC倒谱分析波形图逆滤波后波形图分析倒谱分析可以观察倒浊音的基音周期。相邻两个峰值之间的距离为基音周期。七、实验参考程序N=256;R=zeros(1,N);p=12;a=zeros(p,p);En=zeros(1,p);K=zeros(1,p);sp=wavread('D:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论