版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第十八章 平行四边形导入新课讲授新课当堂练习课堂小结18.2.2 菱 形第2课时 菱形的判定学习目标1.经历菱形判定定理的探究过程,掌握菱形的判 定定理(重点) 2.会用这些菱形的判定方法进行有关的证明和计算. (难点)一组邻边相等有一组邻边相等的平行四边形叫做菱形平行四边形菱形的性质菱形两组对边平行四条边相等两组对角分别相等 邻角互补两条对角线互相垂直平分每一条对角线平分一组对角边角对角线复习引入导入新课导入新课问题 菱形的定义是什么?性质有哪些?根据菱形的定义,可得菱形的第一个判定的方法:AB=AD,四边形ABCD是平行四边形,四边形ABCD是菱形.数学语言有一组邻边相等的平行四边形叫做菱
2、形.ABCD思考 还有其他的判定方法吗?讲授新课讲授新课对角线互相垂直的平行四边形是菱形一前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相垂直的平行四边形是菱形.你能证明这一猜想吗?ABCOD已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O ,ACBD.求证:ABCD是菱形.证明: 四边形ABCD是平行四边形. OA=OC. 又ACBD, BD是线段AC的垂直平分线. BA=BC. 四边形ABCD是菱形(菱形的定义).证一证
3、对角线互相垂直的平行四边形是菱形ACBD几何语言描述:在ABCD中,ACBD, ABCD是菱形.ABCD菱形ABCDABCDABCD菱形的判定定理:归纳总结例1 如图, ABCD的两条对角线AC、BD相交于点O,AB=5,AO=4,BO=3. 求证:四边形ABCD是菱形.ABCDO又四边形ABCD是平行四边形, OA=4,OB=3,AB=5,证明:即ACBD, AB2=OA2+OB2,AOB是直角三角形,典例精析四边形ABCD是菱形.例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形 ABCDEFO12证明: 四边形ABCD是矩形, AE
4、FC,1=2.EF垂直平分AC,AO = OC . 又AOE =COF,AOECOF,EO =FO.四边形AFCE是平行四边形.又EFAC 四边形AFCE是菱形.练一练在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD是菱形,则这个条件可以是 ( ) AABC=90 BACBD CAB=CD DABCD B四条边相等的四边形是菱形二小刚:分别以A、C为圆心,以大于 AC的长为半径作弧,两条 弧分别相交于点B , D,依次连接A、B、C、D四点. 已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?CABD想一想:根据小刚的作法你有什么猜
5、想?你能验证小刚的作法对吗? 12猜想:四条边相等的四边形是菱形.证明:AB=BC=CD=AD; AB=CD , BC=AD. 四边形ABCD是平行四边形.又AB=BC,四边形ABCD是菱形.ABCD已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证一证四条边都相等的四边形是菱形AB=BC=CD=AD几何语言描述:在四边形ABCD中,AB=BC=CD=AD,四边形 ABCD是菱形.ABCD菱形ABCD菱形的判定定理:归纳总结四边形ABCDABCD下列命题中正确的是 ( )A.一组邻边相等的四边形是菱形B.三条边相等的四边形是菱形C.四条边相等的四边形是菱形D.
6、四个角相等的四边形是菱形C练一练证明: 1= 2, 又AE=AC,AD=AD, ACD AED (SAS). 同理ACFAEF(SAS) . CD=ED, CF=EF. 又EF=ED,CD=ED=CF=EF, 四边形ABCD是菱形.2例3 如图,在ABC中, AD是角平分线,点E、F分别在 AB、 AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形. ACBEDF1典例精析例4 如图,在ABC中,B90,AB6cm,BC8cm.将ABC沿射线BC方向平移10cm,得到DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形证明:由平移变换的性质得CFAD
7、10cm,DFAC.B90,AB6cm,BC8cm,ACDFADCF10cm,四边形ACFD是菱形22226810 cm .ACABBC 四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便归纳HGFEDCBA证明:连接AC、BD.四边形ABCD是矩形,AC=BD.点E、F、G、H为各边中点,11,22EFGHBDFGEHAC,EF=FG=GH=HE,四边形EFGH是菱形.例5 如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH是菱形.CABDEFGH【变式题】 如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是
8、什么四边形?解:四边形EFGH是菱形.又AC=BD,点E、F、G、H为各边中点,11.22EFGHBDFGEHAC,EF=FG=GH=HE,四边形EFGH是菱形. 顺次连接对角线相等的四边形的各边中点,得到四边形是菱形.归纳理由如下:连接AC、BDABCDEFGH拓展1 如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?解:连接AC、BD.点E、F、G、H为各边中点,11,22EFGHBDFGEHAC,四边形EFGH是平行四边形.拓展2 如图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?四边形EFGH是矩形.同学们自己去解答吧思
9、考 在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?ACDB分析:易知四边形ABCD是平行四边形,只需证一组邻边相等或对角线互相垂直即可.由题意可知BC边上的高和CD边上的高相等,然后通过证ABEADF,即得AB=AD.请补充完整的证明过程EF例3 如图,在ABC中,D、E分别是AB、AC的中点,BE2DE,延长DE到点F,使得EFBE,连接CF.(1)求证:四边形BCFE是菱形;(1)证明:D、E分别是AB、AC的中点,DEBC且2DEBC.又BE2DE,EFBE,EFBC,EFBC,四边形BCFE是平行四边形又EF
10、BE,四边形BCFE是菱形;菱形的性质与判定的综合运用三(2)解:BCF120,EBC60,EBC是等边三角形,菱形的边长为4,高为 ,菱形的面积为 .2 342 38 3(2)若CE4,BCF120,求菱形BCFE的面积 判定一个四边形是菱形时,要结合条件灵活选择方法如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形归纳练一练如图,在平行四边形ABCD中,AC平分DAB,AB=2,求平行四边形ABCD的周长.解:四边形ABCD为平行四边形,ADBC,ABCD,DAC=ACB,BAC=ACD,AC平分DAB,DAC=BAC,D
11、AC=ACD,AD=DC,四边形ABCD为菱形,四边形ABCD的周长=42=8当堂练习当堂练习1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的 四边形是菱形;(4)两条邻边相等,且一条对角线平分一组 对角的四边形是菱形 2.一边长为5cm平行四边形的两条对角线的长分别为 24cm和26cm,那么平行四边形的面积是 . 312cm23.如图,将ABC沿BC方向平移得到DCE,连接AD,下列条件能够判定四边形ACED为菱形的是() AAB=BC BAC=BC CB=60 DACB=60 B解析:将ABC沿
12、BC方向平移得到DCE,ACDE,AC=DE,四边形ABED为平行四边形.当AC=BC时,平行四边形ACED是菱形故选BABCDOE4.如图,矩形ABCD的对角线相交于点O,DEAC,CE BD.求证:四边形OCED是菱形.证明:DEAC,CEBD,四边形OCED是平行四边形.四边形ABCD是矩形,OC=OD,四边形OCED是菱形 证明:MN是AC的垂直平分线,AE=CE,AD=CD,OA=OC,AOD=EOC=90.CEAB,DAO=ECO,ADOCEO(ASA)AD=CE,OD=OE,OD=OE,OA=OC,四边形ADCE是平行四边形又AOD=90,四边形ADCE是菱形 5.如图,ABC中
13、,AC的垂直平分线MN交AB于点D,交AC于点O,CEAB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.BCADOEM(1)证明:由尺规作BAF的平分线的过程可得AB=AF,BAE=FAE,四边形ABCD是平行四边形,ADBC,FAE=AEB,BAE=AEB,AB=BE,BE=FA,四边形ABEF为平行四边形,AB=AF,四边形ABEF为菱形;6.如图,在平行四边形ABCD中,用直尺和圆规作BAD的 平分线交BC于点E,连接EF(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长解:四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年甘肃客运从业资格证操作考试内容
- 2023年北京市初三一模道德与法治试题汇编:综合探究题
- 吉首大学《民法总论》2021-2022学年第一学期期末试卷
- 吉首大学《动态网站设计》2021-2022学年期末试卷
- 吉林艺术学院《影视语言技巧》2021-2022学年第一学期期末试卷
- 吉林艺术学院《书法》2021-2022学年第一学期期末试卷
- 车辆赔偿协议书范本文版
- 私人房屋转赠协议书范文模板
- 吉林师范大学《中国地理》2021-2022学年第一学期期末试卷
- 2022年江西省公务员录用考试《申论》真题(行政执法类卷)及答案解析
- 全员消防安全责任制
- 汽油机油低速早燃性能测试方法编制说明
- 新闻稿件编辑出错检讨书范文
- 2023-2024学年山东省济南市历城区九年级(上)期中英语试卷
- 垂直绿化养护要点及病虫害防治
- IWAY6.0实施计划完整
- 《慈母情深》教学设计与指导课件(第二课时)
- 火灾和地震的应急处置
- 人教版八年级上册数学期中考试压轴题专练
- 高等职业院校有关说课的解析-王津 陕西工业职业技术学院(2021)讲解
- 当代社会政策分析 课件 第九章 妇女社会政策
评论
0/150
提交评论