线性系统数学模型new学习教案_第1页
线性系统数学模型new学习教案_第2页
线性系统数学模型new学习教案_第3页
线性系统数学模型new学习教案_第4页
线性系统数学模型new学习教案_第5页
已阅读5页,还剩126页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1第一页,共131页。数学模型数学模型:描述控制系统输入、输出变量以描述控制系统输入、输出变量以及内部各变量之间关系的数学表达式,称及内部各变量之间关系的数学表达式,称为系统的数学模型。为系统的数学模型。 常用的数学模型有微分方程、差分方常用的数学模型有微分方程、差分方程、传递函数、脉冲传递函数和状态空间程、传递函数、脉冲传递函数和状态空间表达式等。建立合理的数学模型,对于系表达式等。建立合理的数学模型,对于系统的分析统的分析(fnx)研究是至关重要的。研究是至关重要的。第1页/共130页第二页,共131页。动态动态(dngti)数学模型数学模型静态数学模型静态数学模型线性系统线性系统(

2、xtng)非线性系统非线性系统(xtng)时变时变(sh bin)系统系统时不变系统时不变系统(定常系统定常系统)这门课程将要研究的是线性定常系统这门课程将要研究的是线性定常系统数学模型的建立方法数学模型的建立方法:解析法或实验法。解析法或实验法。 第2页/共130页第三页,共131页。建立数学模型的一般步骤建立数学模型的一般步骤:(1)分析系统工作原理,将系统划分为若干环节)分析系统工作原理,将系统划分为若干环节,确定系统和环节的输入、输出变量,每个环节,确定系统和环节的输入、输出变量,每个环节可考虑列写一个方程;可考虑列写一个方程;(2)根据各变量所遵循的基本定律)根据各变量所遵循的基本定

3、律(物理定律、物理定律、化学定律化学定律)或通过实验等方法得出的基本规律,列或通过实验等方法得出的基本规律,列写各环节的原始方程式,并考虑适当简化和线性写各环节的原始方程式,并考虑适当简化和线性化;化;(3)将各环节方程式联立,消去中间变量,最后)将各环节方程式联立,消去中间变量,最后得出只含输入、输出变量及其导数得出只含输入、输出变量及其导数(do sh)的微的微分方程;分方程; 第3页/共130页第四页,共131页。例例2-1 试列写图中所示试列写图中所示RC无源网络的微分方程。输无源网络的微分方程。输入入(shr)为为ui(t),输出为,输出为u0(t) 。 解解 根据根据(gnj)基尔

4、霍夫定理,可列出以下基尔霍夫定理,可列出以下式子:式子:dttitiCtiRtui)()(1)()(21111dttiCtiRdttitiC)(1)()()(12222211dttiCtu)(1)(220第4页/共130页第五页,共131页。整理(zhngl)得:)()()()()(002122112022121tutudttduCRCRCRdttudCCRRi令T1=R1C1,T2=R2C2,T3=R1C2 则得 )()()()()(0032120221tutudttduTTTdttudTTi该网络(wnglu)的数学模型是一个二阶线性常微分方程。 第5页/共130页第六页,共131页。例例

5、2-2 图为一弹簧阻尼图为一弹簧阻尼(zn)系统,假设初始静止,当外力系统,假设初始静止,当外力F(t)作用于系统时,系统将产生运动。试列写外力作用于系统时,系统将产生运动。试列写外力F(t)与位移与位移y(t)之间的微分方程。之间的微分方程。 第6页/共130页第七页,共131页。解解 弹簧和阻尼器有相应的弹簧阻力弹簧和阻尼器有相应的弹簧阻力F1(t)和粘性和粘性(zhn xn)摩擦阻力摩擦阻力F2(t),根据牛顿第二定律,根据牛顿第二定律有有 :2221)()()()(dttydmtttFFF)()(1tkyt Fdttdyft)()(2F其中F1(t)和F2(t)可由弹簧(tnhung)

6、、阻尼器特性写出 式 中 k 弹 簧(tnhung)系数 f 阻尼系数第7页/共130页第八页,共131页。整理(zhngl)且标准化 )(1)()()(22tktydttdykfdttydkmF令 称为(chn wi)时间常数; 称为(chn wi)阻尼比; 称为(chn wi)放大系数。 kmT/)2/(mkfzkK/1)()()(2)(222tKtydttdyTdttydTFz得第8页/共130页第九页,共131页。例例2-3 2-3 电枢输入电压电枢输入电压u0(t)u0(t),电动机输出转角为。,电动机输出转角为。RaRa、LaLa、ia(t)ia(t)分别为电枢电路的电阻分别为电枢

7、电路的电阻(dinz)(dinz)、电感和电、电感和电流,流,ifif为恒定激磁电流,为恒定激磁电流,ebeb为反电势,为反电势,f f为电动机轴上为电动机轴上的粘性摩擦系数,的粘性摩擦系数,MLML为负载力矩。为负载力矩。 dttdceeb)(LDMdttdfdttdJM)()(22)(ticMaMD)()()()(22tfMdttdfMdttdJMdttdJMffDD第9页/共130页第十页,共131页。解解 电枢回路(hul)电压平衡方程为 baaaaaedttdiLtiRtu)()()(dttdceeb)(ce为电动机的反电势(dinsh)系数 力矩平衡(pnghng)方程为 LDMd

8、ttdfdttdJM)()(22)(ticMaMD式中 为电动机电枢的转动惯量 J为电动机的力矩系数 Mc)()()()(22tfMdttdfMdttdJMdttdJMffDD第10页/共130页第十一页,共131页。整理(zhngl)得 dtdMLMRucdttdccfRdttdJRfLdttdJLLaLaaMMeaaaa )()()()()(2233dttd)(无量(wling)纲放大系数aacRLT MeaMccJRTMeafccfLT eccK1MeafccfRK电机(dinj)转速电磁时间常数机电时间常数时间常数电机传递系数第11页/共130页第十二页,共131页。dtdMccLMc

9、cRtuKKdtdTTdtdTTLMeaLMeaaeffMMe)( ) 1()(22第12页/共130页第十三页,共131页。例例2-4 2-4 热水电加热系统,如图所示,为减小周热水电加热系统,如图所示,为减小周围空气的热损耗,槽壁是绝热的,控温元件是电围空气的热损耗,槽壁是绝热的,控温元件是电动动(din dn)(din dn)控温开关。控温开关。 第13页/共130页第十四页,共131页。能量(nngling)守恒定律 容器壁散失水带出水吸收加热水带入lChiQQQQQ0其中 Qh 加热器供给(gngj)的热量; QC 贮槽内水吸收的热量; Q0 热水流出槽所带走的热量: Qi 冷水进入

10、槽带入的热量: Ql 隔热壁逸散的热量:dtdTCQCVHTQ 0iiVHTQ RTTQelC贮槽水的热容量;V流出槽水的流量;H 水的比热;R热阻;Ti进入(jnr)槽水的温度;T槽内水的温度;Te槽周围空气温度。 iiVHTQ dtdTCQCRTTQel第14页/共130页第十五页,共131页。整理(zhng l )得 RTTTTVHdtdTCQeih)(或 mjjmjmjniininidttrdbdttcda00)()(返回(fnhu)第15页/共130页第十六页,共131页。线性系统的齐次性和叠加性:uyH(u)y=H(u)H(ku)=kH(u) 则称系统具有齐次性。齐次性:若系统满足

11、叠加性:若系统满足 H(u1+u2)=H(u1)+H(u2)则称系统具有叠加性。同时(tngsh)满足齐次性和叠加性的系统称线性系统。第16页/共130页第十七页,共131页。 假 如 元 件 的 输 出(shch)与输入之间关系x2=f(x1)的曲线如图,元件的工作点为(x10,x20)。 将 非 线 性 函 数 x 2 = f(x1)在工作点(x10,x20)附近展开成泰勒级数 )(! 21)()()(2101102121011011012xxdxfdxxdxdfxfxfxxx第17页/共130页第十八页,共131页。当(x1x10)为微小增量时,可略去(l q)二阶以上各项,写成 )()

12、()(10120101101102xxKxxxdxdfxfxx 其中 为工作点(x10,x20)处的斜率,即此时以工作点处的切线代替(dit)曲线,得到变量在工作点的增量方程,经上述处理后,输出与输入之间就成为线性关系。 101xdxdfK 第18页/共130页第十九页,共131页。图为一铁芯线圈,输入为ui(t),输出(shch)为i(t)。线圈的微分方程为 )()(tuRidtidi)()(tuRidtdidiidi)(tuiiRiii0第19页/共130页第二十页,共131页。 线圈中的磁通 对 也有增量变化(binhu),假如在i0附近连续可微,将在i0 附近展开成泰勒级数,即 020

13、21200)()(! 21)(ididididii因是微小增量(zn lin),将高阶无穷小量略去,得近似式 ididi00)(常数(chngsh)0|)()(iidiiddiid第20页/共130页第二十一页,共131页。)(tuiRdtidLi 这就是铁芯线圈的增量(zn lin)化方程,为简便起见,常略去增量(zn lin)符号而写成 )(tuRidtdiLi返回(fnhu)()()(|0000tuuiiRdtiiddidiii第21页/共130页第二十二页,共131页。 非线性函数的线性化,是指将非线性函数在工作点附近展开成泰勒级数,忽略掉高阶无穷小量及余项,得到(d do)近似的线性

14、化方程,来替代原来的非线性函数。 第22页/共130页第二十三页,共131页。 一般情况下,描述线性定常系统输入与输出(shch)关系的微分方程为 :)()()()()()()()(1111011110trbdttdrbdttrdbdttrdbtcadttdcadttcdadttcdammmmmmnnnnnn第23页/共130页第二十四页,共131页。 在零初始条件下,线性定常系统(xtng)输出量的拉普拉斯变换与输入量的拉普拉斯变换之比,定义为线性定常系统(xtng)的传递函数。 即,)()()(sRsCsGGain增益(zngy)速写第24页/共130页第二十五页,共131页。若已知线性定

15、常系统(xtng)的微分方程为 )()()()()()()()(1111011110trbdttdrbdttrdbdttrdbtcadttdcadttcdadttcdammmmmmnnnnnn式中c(t)为输出量,r(t)为输入量 。 设c(t)和r(t)及其各阶导数(do sh)初始值均为零,对式(2-47)取拉氏变换,得 )()()()(11101110sRbsbsbsbsCasasasammmmnnnn第25页/共130页第二十六页,共131页。则系统(xtng)的传递函数为 nnnnmmmmasasasabsbsbsbsRsCsG11101110)()()()()()()()(sNsM

16、sRsCsG或写为 传递函数与输入、输出(shch)之间的关系,可用图表示。 G(s)R(s)C(s)第26页/共130页第二十七页,共131页。r(t)c(t)SystemR(s)C(s)G(S)第27页/共130页第二十八页,共131页。1.作为(zuwi)一种数学模型,传递函数只适用于线性定常系统,这是由于传递函数是经拉普拉斯变换导出的,而拉氏变换是一种线性积分运算。 2.传递函数是以系统本身(bnshn)的参数描述的线性定常系统输入量与输出量的关系式,它表达了系统内在的固有特性,只与系统的结构、参数有关,而与输入量或输入函数的形式无关。 第28页/共130页第二十九页,共131页。3.

17、传递函数可以是无量纲的,也可以是有量纲的,视系统的输入、输出量而定,它包含着联系输入量与输出量所必须的单位,它不能表明系统的物理特性和物理结构。许多物理性质不同的系统,有着相同的传递函数,正如一些不同的物理现象可以用相同的微分方程(wi fn fn chn)描述一样。 4.传递函数只表示单输入和单输出(SISO)之间的关系(gun x),对多输入多输出(MIMO)系统,可用传递函数矩阵表示。 第29页/共130页第三十页,共131页。5.传递函数是有理(yul)真分式,式(2-49)可表示成 )()()()()(2121nmpspspszszszsKgsG式中p1,p2pn为分母多项式的根,称

18、为传递函数的极点(jdin);z1、z2、 zn为分子多项式的根,称为传递函数的零点; 有确定的零极点(jdin)分布第30页/共130页第三十一页,共131页。6.传递函数是系统(xtng)单位脉冲响应的Laplace变换。)(tg为系统单位脉冲作用下的系统输出:定义时,系统的输出c(t)称为)()(ttr当)(tg此时,1)()(tLtrL所以:)()()()(sGsRsGsCG(s)R(s)C(s)第31页/共130页第三十二页,共131页。7.传递函数分母多项式称为特征多项式,记为而D(s)=0称为特征方程。传递函数分母多项式的阶次总是(zn sh)大于或等于分子多项式的阶次,即nm。

19、这是由于实际系统的惯性所造成的。 nnnnasasasasD1110)(第32页/共130页第三十三页,共131页。 控制系统由许多元件组合而成,这些元件的物理结构和作用原理是多种多样的,但抛开具体结构和物理特点,从传递函数的数学模型来看,可以划分成几种典型环节,常用的典型环节有比例环节、惯性环节、积分(jfn)环节、微分环节、振荡环节、延迟环节等。 第33页/共130页第三十四页,共131页。1. 比例(bl)环节 环节输出量与输入量成正比,不失真也无时间(shjin)滞后的环节称为比例环节,也称无惯性环节。输入量与输出量之间的表达式为c(t)=Kr(t) 比例(bl)环节的传递函数为 Ks

20、RsCsG)()()(式中K为常数,称为比例环节的放大系数或增益。 G(s)R(s)C(s)第34页/共130页第三十五页,共131页。2. 惯性(gunxng)环节(非周期环节) 惯性环节的动态(dngti)方程是一个一阶微分方程 )()()(tKrtcdttdcT其传递函数为 1)()()(TsKsRsCsG式中 T 惯性环节的时间常数(sh jin chn sh) K 惯性环节的增益或放大系数 G(s)R(s)C(s)第35页/共130页第三十六页,共131页。当输入为单位阶跃函数(hnsh)时,其单位阶跃响应为 )1 (11)()(111TeKsTsKLsCLtc单位阶跃响应(xing

21、yng)曲线 第36页/共130页第三十七页,共131页。11/11)()()(TsKRsLRRLssUsIsG 惯性环节(hunji)实例很多,如图所示的R-L网络,输入为电压u,输出为电感电流i,其传递函数式中 RLT RK1第37页/共130页第三十八页,共131页。2. 积分(jfn)环节 输出量正比于输入量的积分的环节称为(chn wi)积分环节,其动态特性方程 dttrTtcti0)(1)(其传递函数 sTsRsCsGi1)()()(式中Ti为积分(jfn)时间常数。 G(s)R(s)C(s)第38页/共130页第三十九页,共131页。积分环节的单位(dnwi)阶跃响应为 tTtC

22、i1)(它随时间直线增长,当输入突然消失,积分停止,输出维持不变,故积分环节具有记忆(jy)功能,如图所示。 第39页/共130页第四十页,共131页。上图为运算放大器构成的积分环节(hunji),输入ui(t),输出u0(t),其传递函数为 sTRCssUsUsGii11)()()(0式中Ti = RC 第40页/共130页第四十一页,共131页。4. 微分(wi fn)环节 理想微分环节的特征输出量正比于输入量的微分,其动态(dngti)方程 dttdrTtcd)()(其传递函数 sTsRsCsGd)()()(式中Td称微分(wi fn)时间常数 它的单位阶跃响应曲线 )()(tTtcdG

23、(s)R(s)C(s)第41页/共130页第四十二页,共131页。如图所示,理想微分环节实际上难以实现,因此我们(w men)常采用带有惯性的微分环节,其传递函数 1)(sTsKTsGdd其单位(dnwi)阶跃响应为 dTKetc1)(第42页/共130页第四十三页,共131页。 曲线如下图所示,实际微分环节的阶跃响应(xingyng)是按指数规律下降,若K值很大而Td值很小时,实际微分环节就愈接近于理想微分环节。 Td值很小时(xiosh)第43页/共130页第四十四页,共131页。5. 二阶振荡(zhndng)环节(二阶惯性环节) 二阶振荡环节(hunji)的动态方程为 )()()(2)(

24、222tKrtcdttdcTdttcdTz其传递函数 12)()()(22TssTKsRsCsGz2222)(nnnssKsGz式中 为无阻尼自然振荡角频率,为阻尼比,在后面(hu mian)时域分析中将详细讨论。 Tn1G(s)R(s)C(s)第44页/共130页第四十五页,共131页。 图 中 所 示 为 R L C 网 络(wnglu),输入为ui(t)、输出u0(t),其动态特性方程 )()()()(00202tutudttduRCdttudLCi其传递函数 222202 11)()()(nnnissRCsLCstUtUsGz式中 LCn1LCR2zG(s)R(s)C(s)第45页/共

25、130页第四十六页,共131页。6. 延迟(ynch)环节(时滞环节) 延 迟 环 节 是 输 入 信 号(xnho)加入后,输出信号(xnho)要延迟一段时间后才重现输入信号(xnho),其动态方程为 )()(trtc其传递函数是一个超越(choyu)函数 sesRsCsG)()()(式中称延迟时间 G(s)R(s)C(s)第46页/共130页第四十七页,共131页。 需要指出,在实际生产中,有很多场合是存在迟延的,比如皮带或管道输送过程、管道反应和管道混合过程,多个设备串联以及测量装置系统等。迟延过大往往会使控制效果恶化( hu),甚至使系统失去稳定。 返回(fnhu)第47页/共130页

26、第四十八页,共131页。 在控制工程中,为了便于对系统进行分析和设计,常将各元件在系统中的功能及各部分之间的联系(linx)用图形来表示,即方框图和信号流图。 第48页/共130页第四十九页,共131页。 方框图也称方块图或结构图,具有形象和直观的特点(tdin)。系统方框图是系统中各元件功能和信号流向的图解,它清楚地表明了系统中各个环节间的相互关系。构成方框图的基本符号有四种,即信号线、比较点、传递环节的方框和引出点。 第49页/共130页第五十页,共131页。第50页/共130页第五十一页,共131页。 对于一个系统(xtng)在清楚系统(xtng)工作原理及信号传递情况下,可按方框图的基

27、本连接形式,把各个环节的方框图,连接成系统(xtng)方框图。 例2-5 图中为一无源RC网络。选取(xunq)变量如图所示,根据电路定律,写出其微分方程组为 第51页/共130页第五十二页,共131页。dttiCtudttiCtutititiRtututiRtututi)(1)()(1)()()()()()()()()()(22231021322021011)(1)()(1)()()()()()()()()()(22231021322021011sIsCsUsIsCsUsIsIsIRsUsUsIRsUsUsI零初始条件下,对等式(dngsh)两边取拉氏变换,得 第52页/共130页第五十三页

28、,共131页。对每个表达式画出结构图图形(txng) )(1)()(1)()()()()()()()()()(22231021322021011sIsCsUsIsCsUsIsIsIRsUsUsIRsUsUsI1)引出点2)比较(bjio)点3)方框4)信号线第53页/共130页第五十四页,共131页。 RC网络(wnglu)方框图 各环节(hunji)方框图 第54页/共130页第五十五页,共131页。例2-6 图中为电枢电压控制的直流他励电动机,描述其运动(yndng)方程为 LDaMDeaaaaaaadtdJtictctetetiRdttdiLtuMMM)()()()()()()(第55页

29、/共130页第五十六页,共131页。零初始条件下,对式中两边(lingbin)取拉氏变换 )(1)()()()()()()()(1)()(sJsssscsscssIsLRsEsULDaMDeaaaaaaMMIME)()()()()()()()()()()(ssJssscsscssEsIsLRsULDaMDeaaaaaaMMIME)()()()()()()()()()()(ssJssscsscssEsIsLRsULDaMDeaaaaaaMMIME第56页/共130页第五十七页,共131页。 将同一变量的信号线连接起来,将输入Ua(s)放在左端,输出(shch)(s)放在图形右端,得系统方框图如图

30、所示。 第57页/共130页第五十八页,共131页。串联、并联和反馈(fnku)三种基本形式。 1.串联(chunlin) :n个环节串联后总的传递函数 :)()()( )()()()()()()()()(211121sGsGsGsXsCsXsXsRsXsRsCsGnn第58页/共130页第五十九页,共131页。即环节串联后总的传递函数等于(dngy)串联的各个环节传递函数的乘积。 环节(hunji)的串联RC网络(wnglu)第59页/共130页第六十页,共131页。2.并联 :若各个环节接受同一输入(shr)信号而输出信号又汇合在一点时,称为并联。如图2-34所示。由图可知(k zh) )

31、()()()(21sCsCsCsCn)()()( )()()()()()(2211sRsGsCsRsGsCsRsGsCnn总的传递函数为 )()()( )()()()()()()(2121sGsGsGsRsCsCsCsRsCsGnn环节(hunji)的并联)()()()()(21sRsGsGsGsCn第60页/共130页第六十一页,共131页。3.反馈:若将系统或环节的输出信号反馈到输入(shr)端,与输入(shr)信号相比较,就构成了反馈连接,如图所示。如果反馈信号与给定信号极性相反,则称负反馈连接。反之,则为正反馈连接,反馈(fnku)连接若反馈环节(hunji)H(s)=1称为单位反馈。

32、 第61页/共130页第六十二页,共131页。前向通道:由信号(xnho)输入点到信号(xnho)输出点的通道反馈通道:输出信号(xnho)反馈到输入点的通道。 偏差信号e(t):给定(i dn)信号r(t)和反馈信号b(t) 之差 开环传递函数= )()()()(sHsGsEsB前向通道(tngdo)传递函数= )()()(sGsEsC闭环传递函数(s) :系统输出信号C(s)与输入信号R(s)之比)()(1)()()()(sHsGsGsRsCs“-”对应正反馈“”对应负反馈第62页/共130页第六十三页,共131页。)()(1)()()()()()(1)()()()()()()(1)()(

33、)()()()()()()()()()()()()()(sGsHsGsRsCssGsHsGsRsGsEsCsGsHsRsEsEsGsHsRsEsCsHsRsBsRsEsEsGsC负反馈第63页/共130页第六十四页,共131页。R(s)C(s)(s)第64页/共130页第六十五页,共131页。复杂(fz)的系统图:第65页/共130页第六十六页,共131页。1)方框图的变换应按变换前后信号等效原则进行。即对方框图的任一部分进行变换时,变换前、后输入输出总的数学关系式应保持不变。2)串联、并联和反馈(fnku)简化为一个等效环节3) 相同类型点往一起移动。4)相同比较点可交换位置,相同引出点可交

34、换位置第66页/共130页第六十七页,共131页。引出(yn ch)点前移引出(yn ch)点后移G2(s)G2(s)G1(s)G1(s)c1c2c3c2c1G2(s)c3G2(s)G2(s)G1(s)G1(s)c1c2c3c2c1c31/G2(s)变换(binhun)和简化具体方法:第67页/共130页第六十八页,共131页。比较(bjio)点前移比较(bjio)点后移G2(s)G2(s)G1(s)G1(s)c1c2c3c2c11/G2(s)c3G2(s)G2(s)G1(s)G1(s)c1c2c3c2c1G2(s)c3变换(binhun)和简化具体方法:第68页/共130页第六十九页,共13

35、1页。例例2-7化简化简图图(a)所示系所示系统统(xtng)方框图,并方框图,并求系统求系统(xtng)传传递函数递函数 )()()(sRsCsG第69页/共130页第七十页,共131页。)()(1)GG(GG ) 1)(11)(1)()()(4321243212143211243212114321211GGGGHGGGHGGGHGGGHGGGGGGHGGGsRsCsG第70页/共130页第七十一页,共131页。 图2-37 (a)是一个(y )交错反馈多路系统,采用引出点后移或前移,比较点前移等,逐步变换简化,可求得系统的闭环传递函数为 例例2-8 2-8 试化简如图试化简如图2-37 (

36、a)2-37 (a)所示系统所示系统(xtng)(xtng)的的方框图,并求闭环传递函数。方框图,并求闭环传递函数。 )()(1)(1 ()()(33224312143215sHGGsHGGsHGGsGGGGGsG第71页/共130页第七十二页,共131页。图2-37 方框图的变换(binhun)与简化 第72页/共130页第七十三页,共131页。返回(fnhu)第73页/共130页第七十四页,共131页。 信号流图是表示线性方程组变量间关系的一种图示方法。将信号流图用于控制理论中,可不必求解方程就得到各变量之间的关系,既直观(zhgun)又形象。当系统方框图比较复杂时,可以将它转化为信号流图

37、,并可据此采用梅逊(Mason)公式求出系统的传递函数。 第74页/共130页第七十五页,共131页。考虑(kol)如下简单等式 jijixax 这里变量xi和xj可以是时间函数(hnsh)、复变函数(hnsh),aij是变量xj变换(映射)到变量xi的数学运算,称作传输函数(hnsh),如果xi和xj是复变量s的函数(hnsh),称aij为传递函数(hnsh)Aij(s),即上式写为 )()()(sXsAsXjijiiijjxax1因果函数第75页/共130页第七十六页,共131页。 变量xi和xj用节点“”来表示,传输函数用一有向有权的线段(称为支路)来表示,支路上(l shng)箭头表示

38、信号的流向,信号只能单方向流动。 信号流图jijixax )()()(sXsAsXjiji支路(zh l) 节点(ji din)第76页/共130页第七十七页,共131页。在线性系统信号流图的绘制中应包括以下(yxi)步骤: (1)将描述系统的微分方程转换为以s为变量(binling)的代数方程。 (2)按因果关系将代数方程写成如下形式 : nnxaxaxax12121111nnxaxaxax22221212nnnnnnxaxaxax2211第77页/共130页第七十八页,共131页。 5152121111xaxaxax5252221212xaxaxax5552521515xaxaxax第78

39、页/共130页第七十九页,共131页。(3)用节点“”表示n个变量或信号(xnho),用支路表示变量与变量之间的关系。通常把输入变量放在图形左端,输出变量放在图形右端。 例例2-9 2-9 如上图所示的电阻网络,如上图所示的电阻网络,v1v1为输入、为输入、v3v3为输为输出。选出。选5 5个变量个变量v1v1、i1i1、v2v2、i2i2、v3v3,由电压、电流,由电压、电流定律定律(dngl)(dngl)可写出四个独立方程可写出四个独立方程 第79页/共130页第八十页,共131页。1211)()()(RsVsVsI)()()(2132sIsIRsV2322)()()(RsVsVsI)()

40、(243sIRsV 将变量V1(s)、I1(s)、V2(s)、I2(s)、V3(s)作节点(ji din)表示,由因果关系用支路把节点(ji din)与节点(ji din)联接,得信号流图。 第80页/共130页第八十一页,共131页。节点(ji din):表示变量或信号的点,用“”表示。 支路:连接两个节点之间的有向有权线段,方向 用箭头(jintu)表示,权值用传输函数表示。 输入支路:指向节点的支路。 输出支路:离开节点的支路。 源节点:只有输出支路的节点,也称输入节点, 如图中节点X1。 汇节点(阱点):只有输入支路的节点,如图节点X7。 第81页/共130页第八十二页,共131页。信

41、号流图定义(dngy)与术语混合节点:既有输入支路(zh l)、又有输出支路(zh l)的节点, 如图中的X2、X3、X4、X5、X6。 通道(路径):沿着支路箭头方向通过各个相连支路 的路径,并且(bngqi)每个节点仅通过一次。 如X1到X2到X3到X4或X2到X3又反馈回X2。 第82页/共130页第八十三页,共131页。前向通道:从输入(shr)节点(源节点)到汇节点的通道。 如图X1到X2到X3到X4到X5到X6到X7为 一条前向通道,又如X1到X2到X3到X5 到X6到X7也为另一条前向通道。 闭通道(反馈(fnku)通道或回环):通道的起点就 是通道的 终点,如图X2到X3又反馈

42、(fnku)到X2;X4到X5 又反馈(fnku)到X4。 自回环(hugun):单一支路的闭通道,如图中的-H3构成 自回环(hugun)。 第83页/共130页第八十四页,共131页。通道传输或通道增益:沿着(yn zhe)通道的各支路传输的 乘积。如从X1到X7前向通道 的增益G1G2G3G4G5G6。 不接触回环:如果一些回环没有(mi yu)任何公共的节点, 称它们为不接触回环。如G2H1 与G4H2。 第84页/共130页第八十五页,共131页。(1)信号流图只适用(shyng)于线性系统; (2)信号流图所依据的方程式,一定为因果函数(hnsh)形式的代数方程; (3)信号只能按

43、箭头表示的方向沿支路传递; (4)节点上可把所有输入支路的信号叠加,并把总和信号传送到所有输出支路; (5)具有输入和输出支路的混合节点,通过增加一个具有单位传输的支路,可把其变为输出节点,即汇节点; (6)对于给定的系统,其信号流图不是唯一的。 第85页/共130页第八十六页,共131页。(1)加法(jif)规则:n个同方向并联支路的总传输,等于各个支路传输之和,如图(a) 所示: (2)乘法规则(guz) :n个同方向串联支路的总传输,等于各个支路传输之积,如图(b)。 第86页/共130页第八十七页,共131页。(3)混合节点(ji din)可以通过移动支路的方法消去,如图(c)。 (4

44、)回环可根据反馈连接的规则(guz)化为等效支路,如图(d)。 第87页/共130页第八十八页,共131页。例例2-10 2-10 将图将图2-432-43所示系统所示系统(xtng)(xtng)方框图化为信号流方框图化为信号流图并化简求出系统图并化简求出系统(xtng)(xtng)的闭环传递函数的闭环传递函数 )()()(sRsCs 第88页/共130页第八十九页,共131页。解:信号流图如图解:信号流图如图 (a)所示。化所示。化G1与与G2串联等效为串联等效为G1G2支路支路(zh l),G3与与G4并联等效为并联等效为G3+G4支路支路(zh l),第89页/共130页第九十页,共13

45、1页。如图 (b),G1G2与-H1反馈简化为 支路(zh l),又与G3+G4串联,等效为 如图 (c) 121211HGGGG12121431)(HGGGGGG第90页/共130页第九十一页,共131页。进而(jn r)求得闭环传递函数为 )()()(sRsCs )()()()()(1)()()(243211214321sHsGsGsGGsHGGsGsGsGG第91页/共130页第九十二页,共131页。 给定系统信号流图之后,常常希望确定信号流图中输入变量与输出变量之间的关系,即两个节点之间的总增益或总传输。上节采用信号流图简化规则,逐渐简化,最后得到总增益或总传输。但是,这样很费时又麻烦

46、,而梅逊(Mason)公式可以(ky)对复杂的信号流图直接求出系统输出与输入之间的总增益,或传递函数,使用起来更为方便。 第92页/共130页第九十三页,共131页。梅逊增益(zngy)公式可表示为 kkPT式中, T 输出(shch)和输入之间的增益或传递函数; Pk 第k条前向通道的增益或传输函数; 信号流图的特征值 =1- Lj1+ Lj2- Lj3+ Lj1所有不同回环增益之和; Lj2所有两两互不接触回环增益乘积之和; Lj3所有三个互不接触回环增益乘积之和 k 与第k条前向通道不接触的那部分信号流图的,称为第k条前向通道特征式的余子式。 第93页/共130页第九十四页,共131页。

47、例例2-11 2-11 利用利用(lyng)(lyng)梅逊公式求图中所示系统的梅逊公式求图中所示系统的传递函数传递函数 C(s) / R(s) C(s) / R(s)。p4L6第94页/共130页第九十五页,共131页。图中有六个单回环,其增益为:L1= -G3H2,L2 = -G5H1,L3 = -G2G3G4G5H3,L4 = -G6G4G5H3,L5 = -G2G7G5H3, 其中(qzhng)L1与L2是互不接触的,其增益之积解:输入量解:输入量R(s)与输出量与输出量C(s)之间有三条前向之间有三条前向通道通道(tngdo),对应,对应Pk与与k为为P1=G1G2G3G4G5 1=

48、1P2=G1G6G4G5 2=1P3=G1G2G7G5 3=1P4= -G1G6G2G7G5 4=1L1L2 = G3G5H1H2 )()(357266HGGHGL第95页/共130页第九十六页,共131页。系统(xtng)的特征式为 21654321)(1LLLLLLLL系统(xtng)的传递函数为 )()(sRsC)(276515721546154321GGGGGGGGGGGGGGGGGG35463543215231HGGGHGGGGHGHG3276521533572HHGGGHHGGHGGG第96页/共130页第九十七页,共131页。例例2-12 求图示信号流图的闭环传递函数 解:系统解

49、:系统(xtng)(xtng)单回环有:单回环有:L1 = G1L1 = G1,L2 = L2 = G2G2,L3 = L3 = G1G2G1G2, L4 = L4 = G1G2 G1G2,L5 = L5 = G1G2 G1G2系统系统(xtng)(xtng)的特征的特征式式 为:为: 212151311GGGGLiiP4L5第97页/共130页第九十八页,共131页。前向通道(tngdo)有四条: P1 = -G1 1=1 P2 = G2 2=1 P3 = G1G2 3=1 P4 = G1G2 4=1 系统(xtng)的传递函数为 2121212141312)(GGGGGGGGPsGiii返

50、回(fnhu)第98页/共130页第九十九页,共131页。 控制系统的数学模型在系统分析和设计中是相当重要的,在线性系统理论中常用的数学模型有微分方程、传递函数、状态空间表达式等,而这些模型之间又有着某些内在的等效关系(gun x)。MATLAB主要使用传递函数和状态空间表达式来描述线性时不变系统(Linear Time Invariant简记为LTI)。 第99页/共130页第一百页,共131页。单输入单输出线性连续(linx)系统的传递函数为 nnnnmmmmasasasabsbsbsbsRsCsG 11101110)()()(其中mn。G(s)的分子多项式的根称为(chn wi)系统的零

51、点,分母多项式的根称为(chn wi)系统的极点。令分母多项式等于零,得系统的特征方程: D(s)=a0sn+a1sn1+an1s+an=0 第100页/共130页第一百零一页,共131页。 因传递函数为多项式之比,所以我们先研究(ynji)MATLAB是如何处理多项式的。MATLAB中多项式用行向量表示,行向量元素依次为降幂排列的多项式各项的系数,例如多项式P(s)=s3+2s+4 ,其输入为 P=1 0 2 4 注意(zh y)尽管s2项系数为0,但输入P(s)时不可缺省0。 MATLAB下多项式乘法处理(chl)函数调用格式为 C=conv(A,B) 第101页/共130页第一百零二页,

52、共131页。 例如给定两个多项式A(s)=s+3和B(s)=10s2+20s+3,求C(s)=A(s)B(s),则应先构造(guzo)多项式A(s)和B(s),然后再调用conv( )函数来求C(s)A =1,3; B =10,20,3;C = conv(A,B) C = 10 50 63 9即得出(d ch)的C(s)多项式为10s3 +50s2 +63s +9 第102页/共130页第一百零三页,共131页。 MATLAB提供的conv( )函数的调用允许(ynx)多级嵌套,例如 G(s)=4(s+2)(s+3)(s+4)可由下列的语句来输入 G=4*conv(1,2,conv(1,3,1

53、,4) 第103页/共130页第一百零四页,共131页。 有了多项式的输入,系统的传递函数在MATLAB下可由其分子和分母(fnm)多项式唯一地确定出来,其格式为 sys=tf(num,den) 其中num为分子(fnz)多项式,den为分母多项式 num=b0,b1,b2,bm;den=a0,a1,a2,an;第104页/共130页第一百零五页,共131页。对于其它(qt)复杂的表达式,如)432)(3()62)(1()(23222sssssssssG可由下列语句(yj)来输入 num=conv(1,1,conv(1,2,6,1,2,6);den=conv(1,0,0,conv(1,3,1,

54、2,3,4);G=tf(num,den) Transfer function: 212313495566024032045sssssssssss第105页/共130页第一百零六页,共131页。 传递函数G(s)输入之后(zhhu),分别对分子和分母多项式作因式分解,则可求出系统的零极点,MATLAB提供了多项式求根函数roots(),其调用格式为 roots(p)其中(qzhng)p为多项式。 第106页/共130页第一百零七页,共131页。例如(lr),多项式p(s)=s3+3s2+4 p=1,3,0,4; %p(s)=s3+3s2+4 r=roots(p) %p(s)=0的根 r=-3.3

55、533 0.1777+1.0773i 0.1777-1.0773i 反过来,若已知特征多项式的特征根,可调用MATLAB中的poly( )函数,来求得多项式降幂(jin m)排列时各项的系数,如上例 poly(r) p = 1.0000 3.0000 0.0000 4.0000第107页/共130页第一百零八页,共131页。 而polyval函数用来求取(qi q)给定变量值时多项式的值,其调用格式为 polyval(p,a)其中(qzhng)p为多项式;a为给定变量值 例如(lr),求n(s)=(3s2+2s+1)(s+4)在s=5时值: n=conv(3,2,1,1,4);value=po

56、lyval(n,-5) value=66第108页/共130页第一百零九页,共131页。p,z=pzmap(num,den)其中, p传递函数G(s)= numden的极点(jdin) z传递函数G(s)= numden的零点例如,传递函数 传递函数在复平面上的零极点图,采用pzmap()函数来完成,零极点图上,零点用“。”表示(biosh),极点用“”表示(biosh)。其调用格式为13316)(232sssssG)3)(2)(2()2)(1()(sisissssH第109页/共130页第一百一十页,共131页。 用MATLAB求出G(s)的零极点(jdin),H(s)的多项式形式,及G(s

57、)H(s)的零极点(jdin)图 numg=6,0,1; deng=1,3,3,1;z=roots(numg) z=0+0.4082i 00.4082i %G(s)的零点(ln din)p=roots(deng)p=1.0000+0.0000i 1.0000+0.0000i %G(s)的极点 1.0000+0.0000i第110页/共130页第一百一十一页,共131页。 n1=1,1;n2=1,2;d1=1,2*i; d2=1,-2*i;d3=1,3;numh=conv(n1,n2); denh=conv(d1,conv(d2,d3);printsys(numh,denh)124233232s

58、ssssnumh/denh=%H(s)表达式mun=conv(mung,numh);den=conv(deng,denh);pzmap(num,den) %零极点(jdin)图title(pole-zero Map) 第111页/共130页第一百一十二页,共131页。零极点(jdin)图如图所示 :1.0000+0.0000i 1.0000+0.0000i 1.0000+0.0000i第112页/共130页第一百一十三页,共131页。 若已知控制系统的方框图,使用MATLAB函数(hnsh)可实现方框图转换。 1.串联串联(chunlin) 如图所示如图所示G1(s)和和G2(s)相串联相串联

59、(chunlin),在在MATLAB中可用串联中可用串联(chunlin)函数函数series( )来求来求G1(s)G2(s),其调用格式为其调用格式为 num,den=series(num1,den1,num2,den2)其中:其中:22)(2dennumsG11)(1dennumsGdennumsGG)(21第113页/共130页第一百一十四页,共131页。2.并联并联(bnglin) 如图所示如图所示G1(s)和和G2(s)相并联相并联(bnglin),可由可由MATLAB的并联的并联(bnglin)函数函数parallel( )来实现来实现,其调用格式为其调用格式为 num,den=

60、parallel(num1,den1,num2,den2)其中(qzhng):22)(2dennumsG11)(1dennumsGdennumsGsG)()(21第114页/共130页第一百一十五页,共131页。3.反馈反馈(fnku) 反馈连接如图所示。使用(shyng)MATLAB中的feedback( )函数来实现反馈连接,其调用格式为 num,den=feedback(numg,deng,numh,denh,sign) 式中:dengnumgsG)(sign为反馈(fnku)极性,若为正反馈(fnku)其为1,若为负反馈(fnku)其为1或缺省。dennumsHsGsG)()(1)(d

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论