数据分析控制程序ISO13485_第1页
数据分析控制程序ISO13485_第2页
数据分析控制程序ISO13485_第3页
数据分析控制程序ISO13485_第4页
数据分析控制程序ISO13485_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 1 / 28编制审核批准日期日期日期1. 目的版本修订内容修订日期修订人A0首次发布。2015.06.01高辉B0全面更改。2016.09.01高辉 2 / 28确立数据收集、分析的方法和合格标准的理论依据,为管理层和工程部提供收集连贯性信息并且根据信息制定公司决策的途径,这些决定促成工艺过程的改进、产品质量符合客户要求、健全的质量体系和降低成本。2. 范围本程序适用于公司数据和资料的分析和使用。3. 定义3.1样本量样本量(样本大小)是为了确认试验所需的数目/数量。样本量是根据预先设定的置信度水平用统计方法计算出来的。3.2工艺过程特性这是对于给定工艺过程满足用户要求和规范进行描述和确定的

2、一个实践过程。这个实践过程产生工艺过程特性报告,该报告用作为设计的工程基础,建立工艺工程确认的关键参数,确认批生产记录数据,指导数据取样,过程监控和控制计划的发展,提供今后工艺过程变更和改进的参考。因为工艺过程特性报告被许多关键的决定用作参考文献,因此该报告属于文件版本控制管理范围。典型的工艺过程特性工作包括工艺工程师和质量工程师,同时还需要开发部门的输入。3.3抽样计划抽样计划包括样品量,也包括何时、何地和样品如何被抽取。抽样计划由过程中的已知和预期变量决定,这些变量受取样时间,地点和方法影响。抽样计划提供代表设备和工艺过程特性的信息,包括特征变量。 3.4属性数据能够记录和分析的定性数据,

3、通常表达为某些特性的存在和不存在,比如,通过失败数据。 3.5变量数据能在连续尺度上测量的定量数据。4. 职责部门数据收集要点最低限度频率建议形式品管部进货质量分析每季帕累托图,趋势图,和直方图品管部过程中缺陷分析每季帕累托图,趋势图,和直方图品管部一次合格率每季直方图,趋势图品管部量具可重复性与可再现性分析新产品开发需要时技术报告生产部设备故障分析直方图,趋势图工程部工艺过程特性研究新产品开发需要时技术报告工程部生产过程失效模式及其后果分析新产品开发和转移项目需要时技术报告品管部纠正和预防措施的功效 每季帕累托图品管部审核不合格项分析每年帕累托图,趋势图,和直方图品管部顾客投诉每季帕累托图,

4、趋势图,和直方图5. 工作程序 3 / 285.1总要求公司为促成工艺过程的改进,产品质量符合客户要求,健全的质量体系和降低成本所需的数据,建立数据收集所需的方法和手段,并对这些数据进行定期整理和分析,以作为公司持续改进的依据和预防不合格产品或不合格现象的出现。需要数据的事务过程包括,但不限于以下方面:1) 工艺过程的绩效2) 产品检验3) 进货检验4) 供应商质量5) 客户投诉6) 体系运行必须评审数据,必须考虑合适的措施,评审和措施的证据必须以书面形式记录。数据记录必须根据记录控制程序保留,为调查和今后的研究提供帮助。5.2品管部负责公司相关数据收集的确定和指导正确运用数据进行分析以获得有

5、用的信息,持续改进公司体系和运行,优化过程管理。5.3公司所需的数据涉及到公司产品实现和确保客户满意的整个过程,各部门结合本部门工作特质和特点,选用合适的统计技术,并正确应用统计方法来得到有用的信息。分析包括用能够将数据转化为有用信息的分析工具来评估原始数据。应用分析工具把数据简化成或处理成数字或图形。一旦数据转换成有用的信息形式,经行分析的人员需要评审它的准确性和明确性,并进一步从中得出有用或有意义的内容。不能得出研究对象有用东西的数据只会浪费时间和资源。在商业和工程应用上,数据分析应该用公认的方法。随着新的分析技术的发展和现行的技术的改进,它们可能会被公司采用。下面列出部分分析工具,但是分

6、析工具不仅限于这些:1) 常见图表(典型的电子数据表的应用,比如Excel电子表格)2) 统计过程管理控制和趋势图3) 因果图4) 帕累托图5) 产能研究6) 方差分析7) 失效模式及其后果分析8) 试验设计9) 测试系统分析所列出的分析工具可能通过运用软件,软件包括,但是不限于Excel电子表格。5.4公司的数据收集和分析涉及到下列方面,但不限于以下方面:1) 产品质量分析2) 供应商的产品质量、交货率的评价 3) 影响产品加工质量的设备运行状况分析 4 / 284) 特殊过程监控参数的分析 5) 生产管理效率,包括订单及时完成率、加工工时的分析6) 客户投诉抱怨处理的数据分析7) 新品研发

7、过程和产品试制数据的分析5.5数据收集和分析的具体实施 1) 业务发展部负责产品交付及时率与顾客满意率的数据收集和分析统计工作,频率为分别为每月月底进行和年度。2) 工程部负责样品一次通过率的数据收集和分析统计工作,频率为每月月底进行。3) 采购部供应商交货及时率的数据收集和分析统计工作,频率为每月月底进行。4) 品管部负责顾客抱怨数、顾客抱怨处理及时率、供应商产品合格率和产品一次合格率的数据收集和分析统计工作,频率为每月月底进行。5) 生产部负责生产计划达成率和设备维护保养达成率的数据收集和分析统计工作,频率为每月月底进行。6) 综合管理部负责员工培训达成率和员工流失率的数据收集和分析统计工

8、作,频率分别为每季度和每月月底进行。7) 物控部负责盘点准确率的数据收集和分析统计工作,频率为每月月底进行。5.6所有这些数据的分析结果应及时提交品管部和其它相关部门,以研究采取针对性措施。5.7记录归档品管部负责归档资料。6. 表单和模板质量目标实施情况跟踪表 YL/QR-QP/22-017. 相关文件持续改进控制程序 YL-QP-23产品工艺开发控制程序 YL-QP-08管理评审控制程序 YL-QP-04顾客反馈控制程序 YL-QP-03与顾客有关过程控制程序 YL-QP-10纠正和预防措施控制程序 YL-QP-248. 记录质量目标实施情况跟踪表 5 / 289. 附录 A9.1样本量确

9、定 抽样是推论统计学的一个方法,它从总体样本中推断出该总体的结论。该结论是从样本中推演出来的。这是一个假设前提正确的情况下应用逻辑推理得出结论的过程。因此,这种情况下,对于给定的成功期望置信度,假设前提是具有代表性的样本可以提供足够的数据来得出准确的结论。任何时候,当采用抽样方法时,都可能存在相关的错过超出限度条件的风险。风险级别随着样本大小和抽样技术而变化。抽样时必须考虑所收集数据的形式。有属性和变量两种形式的数据。属性数据是基于有限离散的条件集合,比如,是/不是,蓝/白,去/不去。变量数据是基于理论上无限多的测量数据,这些数据只受限于测量系统本身。在某些情况下,有些特殊研究有其指定的抽样要

10、求。其中一个例子是量具重复性和再显性分析(GR&R),工业界的标准做法是用十个零件样本。样本必须随机抽取并且没有偏向。如果抽样本身不是随机进行的,样本代表材料整个批次的能力就会打折。抽样的员工可能会基于某种原因倾向于只抽样某些特定的样品。这种偏向对于抽样有效性有负面影响。9.2为生产能力和过程特性确定样本量9.2.1 总要求对所有关键特性的过程特性研究需要按照设计转移或全球转移方针的要求完成及分析。在特性研究中生产的产品应按照与正常生产等同的过程加工而成。最小和最大号的产品应用于研究分析过程能力从而估计最差的情况,如果不选择最小和最大号的产品进行过程特性研究,在过程特性研究方案中必须注

11、明理由。过程特性研究期间生产的产品有可能用于销售。估算样本大小及过程能力以下流程用于计算样本大小:1) 打开Minitab 选择Stat Power and Sample Size 1-sample t2) 下面窗口将被打开3) 样本大小栏不填4) 填写差异。这是将被探测到的最大差异,通常填写量具公差或图纸最严公差的1/10 6 / 285) 根据过程失效模式影响分析的RPN值及下表填写把握度风险等级风险等级PFMEA RPN 值值把握度把握度低0 960.90中97 1440.95高1450.996) 根据历史数据或原型机/工艺开发产品填写标准差。标准差可以在过程特性研究完成后被估出。估出的

12、标准差必须被带回到1-sample t 检验中重新计算样本大小以确定选用的样本大小足够大。7) 点击OK8) 一张展示最小需求样本大小的图表将会在Minitab中出现。过程特性研究最少需要15件样品以使在统计上显著9) 过程特性研究方案中必须包含样本大小的选择理由使用过程失效模式及后果分析中的严重度来评估每个关键特性的严重度。得出下表的计算过程见附录严重度严重度可接受的下限可接受的下限 CPK 水平水平9 - 101.677 - 81.334 - 61.01 - 30.67表 1:下限 CPK 水平 在决定了过程特性研究接收标准后,样品应被制造并分析过程能力,参考统计过程控制-SPC能力研究作

13、业指导书在过程特性研究中,当每个CP达到了某一可接受的下限CPK水平,同时过程失效模式影响分析中算出的RPN值已经被减低到区域1或2,抽样计划将按照下表设定。为使关键特性按照下表白色部分所列的抽样计划测量,必须同时达到要求的下限CPK和RPN值。抽样计划抽样计划 Sampling Plan严重度严重度1-34-67-89-10下限下限 CPK 要求要求0.671.01.331.67 0.67100%100%100%100%0.67 x 1.0100%100%100%100%1.0 x 1.33一般水平一般水平100%100%1.33 x 1.67一般水平一般水平一般水平100%1.67 x 2

14、.0一般水平一般水平一般水平一般水平下限观察下限观察 CPK 2.0质量工程师决定 7 / 28如果在过程特性研究中下限CPK达到2.0或更高,检验计划按照质量工程师意见设定。如果可接受的下限CPK水平没有达到或者关键特性在过程失效模式影响分析中的RPN值是在区域2或3,产品将进入控制期并被100%检验。在控制期时间内,必须努力减少RPN值或提高过程能力。控制期和100%检验将持续到能力被提高并且/或者风险被降低。如果产品在控制期内,CPK和/或RPN必须作为关键表现指标被监控。产品在转为量产时不能处在控制期,除非生产, 工艺和质量成员均同意接受此风险。上面所列出的CPK可接受水平是下限CPK

15、水平;使用下表的观察CPK,有一定的置信度长期CPK会大于等于下限CPK。对于要求下限CPK为0.67和1.0的那些低风险尺寸,90%的置信度用来计算观察CPK水平。对于要求下限CPK为1.33的那些中等风险尺寸,95%的置信度用来计算观察CPK水平。对于要求下限CPK为1.67的那些高风险尺寸,99%的置信度用来计算观察CPK水平。严重度严重度1-34-67-89-10下限下限 CPK 要求要求0.671.01.331.671001.1051.2911.5151.805901.1121.2991.5251.826751.1241.3131.5451.864501.1571.3511.6051

16、.973451.1681.3631.6252.008401.181.3771.6452.051351.1951.3951.6752.105301.2151.4171.712.177251.2411.4471.762.277201.2781.491.832.431样本大小样本大小151.3381.561.952.703表 2: 观察 CPK 水平通常30件的样本大小将用于过程特性研究。这一行被标出。如果样本大小不同,相应的观察CPK水平必须从表中选出。假设样本大小30件,应用一般水平-一般水平抽样计划,对于每一风险水平的说明如下表。观察CPK假设与上表的置信水平相同计算得出。严重度严重度1-34

17、-6观察观察 CPK 要求要求1.2151.417 1.215100%100%1.215 x 1.417100%100%1.417 x 1.61一般水平一般水平1.61 x 1.81一般水平一般水平1.81 x 2.41一般水平一般水平观察观察 CPK 2.41质量工程师决定严重度严重度7-8观察观察 CPK 要求要求1.71 1.71100%1.71 x 1.93一般水平观察观察CPK1.93 x 2.56一般水平 8 / 28 2.56质量工程师决定严重度严重度9-10观察观察 CPK 要求要求2.177 2.177100%2.177 x 2.9一般水平观察观察CPK 2.9质量工程师决定

18、如果可接受的观察CPK水平没有达到或者关键特性在过程失效模式影响分析中的RPN值是在区域2或3,产品将进入控制期并被100%检验。在控制期时间内,必须努力减少RPN值或提高过程能力。控制期和100%检验将持续到能力被提高并且/或者风险被降低。如果产品在控制期内,CPK和/或RPN必须作为关键表现指标被监控。产品在转为量产时不能处在控制期,除非生产, 工艺和质量成员均同意接受此风险。9.2.2 为检测系统分析(MSA)量具重复性与再现性(GR&R)确定样本量9.2.2.1 量具重复性与再现性(GR&R)研究典型情况下要用 10 个样品,但最少不能少于 5 个。1) 为检测程序确定

19、样本量零缺陷验收:抽样计划是零缺陷验收计划。 如果发现有一个拒收,该批次(或生产订单)必须拒收或分类。拒收出现在检验场合,基于单个产品的批次的拒收可能出现而不影响业务。然而,可能存在业务上原因导致为什么没有进一步检验的批拒收将中断生产。在这种情况下,操作员或检验员可以分类该批次。分类是指检验样本量100%。这适用于过程中操作员自检以及进货检验和最终检验。抽样计划方法:抽样计划必须基于GB/T2828:2012 (与ANSI Z1.4: 2008等同)属性检验的抽样程序和表格。ANSI标准描述了抽样的统计有效性基础,并且允许零缺陷验收和可接受概率(Pa)在5-10%范围内。将采用二个通常的检验水

20、平,包括类型一般水平,一般水平 收紧。2) 检测系统分析(MSA)/量具可重复性与可再现性(GR&R)接受标准检测系统分析(MSA):这是个通过分析和评审测量系统用实验和数学来保证测量的准确性和一致性方法。目的是为指定特性定义最适合的测试方法。这个过程确定测量过程中的变化对整个过程变化有多少影响。为保证和施乐辉骨科孟菲斯所用方法的一致性,本程序参考孟菲斯作业指导书003585检测系统分析。对于量具本身的偏倚,线性及稳定性,主要根据YL-QP-18监视、测量及试验装置的控制程序通过量具校准来控制,GRR本身主要针对量具的重复性及再现性进行研究。为检测系统分析接受标准:由测量误差对总公差的

21、比率-或百分率来确定可接受性。一个测量系统对它所打算的应用是否可接受主要地取决于反映系统误差的公差百分率。这是量具准确性,重复性,再现性,稳定性和线性的综合。参考表A。表表 A 检测系统分析可接受标准检测系统分析可接受标准%测量误差对总公差的百分率可接受性可接受性总的测量误差 30 % 的总公差通常不可接受,需改进。可能可应用于低 9 / 28风险或低精度测量,但应说明量具可重复性与可再现性GR&R研究显示不好的重复性或再现性表明可能的误差根源和可能的系统改进。参考表B。表表 B 检测系统分析误差和改进检测系统分析误差和改进相对于再现性,如果重复性不足是主要的:相对于重复性,如果再现性

22、不足是主要的 测量设备可能需要维护 测量设备需要重新设计刚性 检测设备夹产品过程或地方可能需要改进 部件内的变化可能超出范围操作工可能需要接受如何使用和读取测量设备的培训 校准可能需要更清楚的定义量具可重复性与可再现性 GR&R 研究方法至少必须包括 5 个样品,两个操作员工,每个测量两次。推荐使用 10 个产品。不好的研究结果也能通过增加测量次数/或另一个操作员/或增加产品,比如作为10/3/3 来改进。9.2.3 工艺过程验证样本量确认9.2.3.1 一般原则 抽样计划是过程确认研究所必需的:操作确认(OQ)和性能确认(PQ)。 过程确认方案应有专设抽样计划部分,包括样本量判定和选

23、样。 应制定PQ的抽样计划,这样观测次数以及采集方法就可以在独立观测结果的基础上体现出长期变化。 验证抽样计划的目的是保护“使用方”,且当该过程实际上不符合预定要求时防止生产方通过验证。AQL 检测的初衷是保护生产方,而不是使用方。所以,AQL 不能用来确定验证研究的样本量。用于验证的抽样计划应以 LTPD(对于属性数据而言)和样本 t 检验(对于变量数据而言)的把握度分析为基础。1.3 单变量数据点包含的信息多于单属性数据点。所以,要获得同样的置信水平,需要的属性数据点要多于变量数据点。因此,属性数据指定的抽样计划的样本量要大于变量数据的相应抽样计划的样本量。所以,如果可能的话,即使在常规生

24、产中计划实施属性检查,也要使用变量数据。1.4 风险评估是重要的决定合适LTPD或者把握度的因素1.5 样本量不是每组的数量,而是所有组的总量。2.判定属性数据的取样量判定属性数据的取样量1.1 每一个确认的取样量都基于对应风险区域处(区域1:低风险区域;区域2:中间风险区域;区域3:中度风险区域;区域4:高风险区域)的LTPD的最小拒绝概率并使用零缺陷接收。还取决于确认的阶段(OQ或者PQ),合适取样量的选择参见以上表表12.2 如表 1 中显示取样的严格程度伴随着风险增加而加大。它反映出从区域 1 至区域 4 随着 LTPD 的降低和最小拒绝概率的增加,结果是取样量伴随着增加的风险而增加从

25、而提供必要的保护。2.3 同时,在设计取样计划时,在确认的 OQ 阶段,有意图的通过使用边缘过程参数挑战过程从而评估最差情形下的工艺性能,因此比对 PQ 阶段,更高的 LTPD 被认为是可接受的,而 PQ 是测试正常情况下的过程表现并评估和确认参数。 10 / 282.4 基于风险分析的统计学原理,在预先确定 LTPD 时,确认阶段的 OQ 和 PQ 的取样量依据上表表1,使用了可以提供较小的期望拒绝概率的属性数据。计算原理参见附录 A表表 1确认过程取样量与属性数据风险区域对应表验证阶段验证阶段 / 属性数据的风险水平属性数据的风险水平(c=0)Zone 1Zone 2Zone 3Zone

26、4LTPD 允许批次品率 (%)20201010Pr min (%)90959599OQSample size(样本量样本量)11142944LTPD (%)552.52.5Pr min 拒收概率 (%)90959599PQSample size(样本量)(样本量)45591181803.变量数据的取样量变量数据的取样量3.1 单样品T检验和样本量分析被用于决定变量数据的取样量。图表3列出了基于过程失效模式风险区域的标准要求。如果RPN数值不用于决定风险水平,需要阐述风险选择的原理。在某些情况下,把握度低于0.90比如在等效确认中或者在风险非常低的情况。但是,把握度不能低于0.80.3.2 如

27、果收集变量数据是用于确认,则特定风险区域对取样量的选择将基于相应的把握度,显著水平,和可探测的有效的差异效应(根据表表2)。计算原理参见附录B。表 2 确认过程取样量与变量数据风险区域对应表For Variable data only 仅适用变量数据仅适用变量数据(PASS using 1 Sample-t test)(通过通过 使用使用 1 Sample-t 测试测试)Zone 1Zone 2Zone 3Zone 4Significance level 显著性水平 0.10.050.050.01Power level0.90.90.950.95Difference effect ()差异效应

28、20% of 620% of 620% of 620% of 6OQSample size8101216Significance level 0.10.050.050.01Power level0.90.90.950.95Difference effect ()10% of 610% of 610% of 610% of 6PQSample size263239543.3 取样量的判断对于变量数据也是同样的,如表3显示,随着风险提高,严格水平相应提高,并反映在从区域1到区域4显著性水平的降低,把握度的提高和可检查差异效应的降低。这将导致随着升高的风险而扩大取样量从而提供需要的保护水平3.4 同

29、时,在设计取样计划时,在确认的OQ阶段,有意图的通过使用边缘过程参数挑战过程从而评估最差情形下的工艺性能,因此比对PQ阶段,更高的可获取的差异效应被认为是可接受的,而PQ是测试正常情况下的过程表现并评估和确认参数。3.5 基于OQ和PQ阶段使用变量数据确定取样量的风险分析的统计学原理,在预先确定显著性水平和期望的把握度(依据表3)时,要确定差异效应,参见附录B4.附录附录附录附录 AOQ 和和 PQ 属性数据基于风险分析的统计学原理属性数据基于风险分析的统计学原理 11 / 28附录附录 BOQ 和和 PQ 可变数据基于风险分析的统计学原理可变数据基于风险分析的统计学原理附录附录 C使用统计软

30、件计算使用统计软件计算 T 检验取样量程序检验取样量程序附录附录 x D过程信息未知下为计算取样量进行样品结构估计过程信息未知下为计算取样量进行样品结构估计 12 / 28附录附录 A OQ 和和 PQ 属性数据基于风险分析的统计学原理属性数据基于风险分析的统计学原理A.1: 属性数据基于区域属性数据基于区域 1&2 的的 OQ 取样计划取样计划属性数据取样接收计划属性数据取样接收计划计算类型:Go / no go百分比缺陷率表示批质量使用二项式分布计算接收概率 (RQL or LTPD) 拒绝质量水平/批内允许次品率:20比较使用者计划Sample Size (n)取样量取样量Acc

31、eptance Number (c)接收数量接收数量Percent Defective缺陷率缺陷率Probability Accepting接收概率接收概率Probability Rejecting拒绝概率拒绝概率Zone区域区域110200.0860.914OQ Zone 1140200.0440.956OQ Zone 2在缺陷样品数量= c 时接收,否则则拒绝OC Curve OC 曲线曲线4030201001.00.80.60.40.20.0Lot Percent DefectiveProbability of Acceptance nsample sizecacceptance num

32、ber11 014 0n cOperating Characteristic (OC) Curve 13 / 28A.2: 属性数据基于区域属性数据基于区域 3&4 的的 OQ 取样计划取样计划属性数据取样接收计划属性数据取样接收计划计算类型:Go / no go百分比缺陷率表示批质量使用二项式分布计算接收概率 (RQL or LTPD) 10 拒绝质量水平/批内允许次品率:10比较使用者计划Sample Size (n)取样量取样量Acceptance Number (c)接收数量接收数量Percent Defective缺陷率缺陷率Probability Accepting接收概率

33、接收概率Probability Rejecting拒绝概率拒绝概率Zone区域区域290100.0470.953OQ Zone 3440100.100.990OQ Zone 4在缺陷样品数量= c 时接收,否则则拒绝OC Curve OC 曲线曲线201510501.00.80.60.40.20.0Lot Percent DefectiveProbability of Acceptance nsample sizecacceptance number29 044 0n cOperating Characteristic (OC) Curve 14 / 28A.3: 属性数据基于区域属性数据基于

34、区域 1&2 的的 PQ 取样计划取样计划属性数据取样接收计划属性数据取样接收计划计算类型:Go / no go百分比缺陷率表示批质量使用二项式分布计算接收概率 (RQL or LTPD) 5 拒绝质量水平/批内允许次品率:5比较使用者计划Sample Size (n)取样量取样量Acceptance Number (c)接收数量接收数量Percent Defective缺陷率缺陷率Probability Accepting接收概率接收概率Probability Rejecting拒绝概率拒绝概率Zone区域区域45050.0990.901PQ Zone 159050.0480.952

35、PQ Zone 2在缺陷样品数量= c 时接收,否则则拒绝OC Curve OC 曲线曲线10864201.00.80.60.40.20.0Lot Percent DefectiveProbability of Acceptance nsample sizecacceptance number45 059 0n cOperating Characteristic (OC) Curve 15 / 28 A.4: 属性数据基于区域属性数据基于区域 3&4 的的 PQ 取样计划取样计划属性数据取样接收计划计算类型:Go / no go百分比缺陷率表示批质量使用二项式分布计算接收概率 (RQL

36、 or LTPD) 5 拒绝质量水平/批内允许次品率:5比较使用者计划Sample Size (n)取样量取样量Acceptance Number (c)接收数量接收数量Percent Defective缺陷率缺陷率Probability Accepting接收概率接收概率Probability Rejecting拒绝概率拒绝概率Zone区域区域11802.50.0500.950PQ Zone 318002.50.0100.990PQ Zone 4在缺陷样品数量 null)Calculating power for mean = null + difference=0.1 假设标准偏差=1Di

37、fference 差异效差异效应应Sample Size取样量取样量Target Power目标把握度目标把握度Actual Power实际把握度实际把握度风险区域风险区域1.280.90.918316OQ Zone 1Power Curve for 1-Sample t Test 把握度把握度-T 检验曲线检验曲线2.01.51.00.50.01.00.80.60.40.20.0DifferencePowerAlpha0.1StDev1AlternativeAssumptions6SizeSamplePower Curve for 1-Sample t Test 17 / 28B.2: 风险

38、区域为风险区域为 2&3 的变量数据的变量数据 OQ 取样计划取样计划T 检验Testing mean = null (versus null)Calculating power for mean = null + difference=0.05假设标准偏差=1Difference 差异效差异效应应Sample Size取样量取样量Target Power目标把握度目标把握度Actual Power实际把握度实际把握度风险区域风险区域1.2100.900.918982OQ Zone 21.2120.950.967475OQ Zone 3Power Curve for 1-Sample

39、t Test 把握度把握度-T 检验曲线检验曲线2.01.51.00.50.01.00.80.60.40.20.0DifferencePowerAlpha0.05StDev1AlternativeAssumptions810SizeSamplePower Curve for 1-Sample t Test 18 / 28 B.3: 风险区域为风险区域为 4 的变量数据的变量数据 OQ 取样计划取样计划1-Sample t Test T 检验Testing mean = null (versus null)Calculating power for mean = null + differenc

40、e=0.01 假设标准偏差=1Difference 差异效差异效应应Sample Size取样量取样量Target Power目标把握度目标把握度Actual Power实际把握度实际把握度风险区域风险区域1.2160.950.953007OQ Zone 4Power Curve for 1-Sample t Test 把握度把握度-T 检验曲线检验曲线2.01.51.00.50.01.00.80.60.40.20.0DifferencePowerAlpha0.01StDev1AlternativeAssumptions14SizeSamplePower Curve for 1-Sample

41、t Test 19 / 28B.4: 风险区域为风险区域为 1 的变量数据的变量数据 PQ 取样计划取样计划把握度和取样量把握度和取样量1-Sample t Test T 检验Testing mean = null (versus null)Calculating power for mean = null + differenceAlpha = 0.1 Assumed standard deviation = 1=0.1 假设标准偏差=1Difference 差异效差异效应应Sample Size取样量取样量Target Power目标把握度目标把握度Actual Power实际把握度实际把

42、握度风险区域风险区域0.6260.90.910254PQ Zone 1Power Curve for 1-Sample t Test 把握度把握度-T 检验曲线检验曲线1.000.750.500.250.001.00.80.60.40.20.0DifferencePowerAlpha0.1StDev1AlternativeAssumptions20SizeSamplePower Curve for 1-Sample t Test 20 / 28 B.5: 风险区域为风险区域为 2&3 的变量数据的变量数据 PQ 取样计划取样计划Power and Sample Size 把握度和取样量

43、把握度和取样量1-Sample t Test T 检验Testing mean = null (versus null)Calculating power for mean = null + differenceAlpha = 0.05 Assumed standard deviation = 1=0.05 假设标准偏差=1Difference 差异效差异效应应Sample Size取样量取样量Target Power目标把握度目标把握度Actual Power实际把握度实际把握度风险区域风险区域0.6320.900.908264PQ Zone 20.6390.950.952914PQ Zon

44、e 3Power Curve for 1-Sample t Test 把握度把握度-T 检验曲线检验曲线1.000.750.500.250.001.00.80.60.40.20.0DifferencePowerAlpha0.05StDev1AlternativeAssumptions2632SizeSamplePower Curve for 1-Sample t Test 21 / 28 B.6:风险区域为风险区域为 4 的变量数据的变量数据 PQ 取样计划取样计划Power and Sample Size 把握度和取样量把握度和取样量1-Sample t Test T 检验Testing m

45、ean = null (versus null)Calculating power for mean = null + differenceAlpha = 0.01 Assumed standard deviation = 1=0.01 假设标准偏差=1Difference 差异效差异效应应Sample Size取样量取样量Target Power目标把握度目标把握度Actual Power实际把握度实际把握度风险区域风险区域0.6540.950.951978PQ Zone 4Power Curve for 1-Sample t Test 把握度把握度-T 检验曲线检验曲线1.000.750.

46、500.250.001.00.80.60.40.20.0DifferencePowerAlpha0.01StDev1AlternativeAssumptions47SizeSamplePower Curve for 1-Sample t Test 22 / 28附录附录 C使用统计软件计算属性数据取样数量使用统计软件计算属性数据取样数量第第 1 步步用 Minitab 或任何其他适当的统计软件都可以用于计算。要通过样本 t 检验方程计算样本量,则应输入以下变量:可接受质量水平(可接受质量水平(AQL)- AQL 表示与拒收合格产品相关的风险,即生产方风险。它是此抽样计划通常认可的次品平均百分比

47、。使用该抽样方案可以控制生产者承担将合格批产品错判为不合格而拒收的风险,即保护生产商。它通常被定义为抽样计划会 95%接受此次品百分比的水平。批内允许次品率(批内允许次品率(LTPD)- LTPD 表示与接受不合格产品相关的风险,即使用方风险。是抽样计划通常拒收的次品百分比。使用取样方案可以控制消费者(用户)承担将不合格批产品错判为合格批产品而接收的风险它通常被定义为抽样计划会 90%拒收此次品百分比的水平,即保护消费者同义词:拒收质量水平(RQL)接受概率(接受概率(Pa)- 对于 LTPD 而言,Pa 是指抽样计划会接受缺陷水平已知批次的次数百分比。Pa 的标准为 10%时合格。这就是说抽样计划会接受已知缺陷水平批次的概率为 10%;抽样计划有 90%的几率会拒绝该

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论