版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、A. 2B. 3数学思想专项练(四)转化与化归思想(对应学生用书第 126 页)题组 1 特殊与一般的转化1过抛物线y=ax2(a0)的焦点F,作一直线交抛物线于P,Q两点,若线段PF与FQ的长11度分别为 p,q,则-+-等于()p q1A. 2aB. 2a4C. 4aD.-a122 IC 抛物线y=ax(a 0)的标准方程为x=y(a 0).1则 | |PF| | =| |QF=右右, ,2.如图 1,在棱长为 5 的正方体ABCDABCD中,EF是棱AB上的一条线段,且EF= 2,点Q是AD的中点,点P是棱CD上的动点,则四面体PQEF勺体积()图 1A. 是变量且有最大值B. 是变量且
2、有最小值C. 是变量且有最大值和最小值D. 是常数D 点Q到棱AB的距离为常数,所以EFQ的面积为定值.由CD/EF,可得棱CD/ 平面EFQ所以点P到平面EFQ的距离是常数,于是可得四面体PQEF勺体积为常数.焦点F0,丄4a,取过焦点F的y轴,D由所有满足AP=入E F HC. 5D. 723 .已知点A(1 , - 1) ,B(3,0) ,C(2,1).若平面区域(1 入w2,0 卩三 1)的点P组成,则D的面积为(【导学号:07804153】C. 5D. 73B 分别令入=1,2 , 在0,1内变化, 令卩=0,1 ,入在1,2内变化.可得D为一个平行四边形区域,其面积为三角形ABC面
3、积的两倍.直线AB的方程为x 2y 3= 0, |AB= 4 + 1=5,4.在定圆C: x2+y2= 4 内过点F( 1,1)作两条互相垂直的直线与则儒+器的取值范围是题组 2 正与反的相互转化点C到AB的距离d=35,则D的面积为3.53.C分别交于A,B和M N,设需设需 =t,考虑特殊情况:当AB垂直OP时,MN过点O,|AB最小,|MN最大;当MN垂直OP时,AB过点O|MN最小,|AB最大所以t最小=-,t最=.2.所以t七,大=5 .由命题存在x R,使 e|X0 1| me0”是假命题,得m的取值范围是 (g,a),则实数a的取值是(A. (g,1)B. (g,2)C. 1D.
4、 2C 命题“存在xR,使 e|X011me0”是假命题,可知它的否定形式“任意x R,使e|x1| m0”是真命题,可得m的取值范围是(g,1),而(g,a)与(g,1)为同一区间,故a= 1.6.若某公司从乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为(37B.5 C.亦亦|2 2 3|又因为t+12t1= 2,1所以t+ - 2,4D 甲或乙被录用的对立面是甲、乙均不被录用,故所求事件的概率为7若二次函数f(x) = 4x2 2(p 2)x 2p2p+ 1 在区间1,1内至少存在一个值c,使得f(c) 0,则实数p的取值范围为_ 得a2= |x2+ 2x+ 1,
5、x 1,3, 9wa2w41.22又a0,故当椭圆与线段AB没有公共点时,实数a的取值范围为 0, 晳U9若对于任意t 1,2,函数g(x) =x3+m+ 2x2 2x在区间(t,3)上总不为单调函数,则实数m的取值范围是【导学号:07804154】-:,-5g(x) = 3x+ (m+ 4)x 2,若g(x)在区间(t,3)上总为单调函数, 则g(x)0在(t,3)上恒成立,或g(x)W0在(t,3)上恒成立.22 2 由得 3x+ (4)x 20,即 耐 4 - 3x在x(t,3)上恒成立,所以 耐4-xt3t恒成立,110如果在I I.1,1 COfIpw 2 或P1,3| p-33?p
6、w 3 或p2,取补集为一 3vpv2,即为满足条件的p的取值范2X22&若椭圆 2 +y=a(a 0)与连接两点A(1,2) ,B(3,4)的线段没有公共点,则实数a的取值范围为_易知线段AB的方程为y=x+ 1,x 1,3y=x+1,由x2222 +y=a,故实数p的取值范围为32 .5.5则mH4- 1,即卩mo-5;由得mH4wX- 3x在x(t,3)上恒成立,则mH4b0)上一点,Fl,F2是椭圆的两焦点,且满足|AF| +| AB| = 4.(1) 求椭圆的两焦点坐标;(2) 设点B是椭圆上任意一点,当|AB最大时,求证:A,B两点关于原点0不对称.2 2解由椭圆定义,知
7、2a= 4,所以a= 2.所以+ b=1.把A(1,1)代入,得 1 +右=1,得b2 3=4,所以椭圆方程为所以c2=a2-b2= 4-4 5=6,即c=7 8.333故两焦点坐标为-彳彳 6,0) 冷冷60.(2)(反证法)假设 代代B两点关于原点O对称,则B点坐标为(1,- 1), 此时 IAB= 2 2,而当点B取椭圆上一点M 2,0)时,则|AM= , 10,所以|AM|AB.从而知|AB不是最大,这与|AB最大矛盾,所以命题成立.题组 3 主与次的相互转化11.设f(x)是定义在 R 上的单调递增函数,若f(1ax-x2)ef(2 a)对任意a 1,1恒成立,则x的取值范围为 _.
8、(-8,1U0,+) f (x)是 R 上的增函数,1axxe2a,a1,1 .式可化为(x 1)a+x2+10,对a 1,1恒成立.2令g(a) = (x- 1)a+x+ 1,2g-=x-x+ 20,贝Ui2解得x0或xe-1.g=x+x 0,满足一 1eaei的一切a的值,都有g(x)v0,则实数x的取值范围为 _ .即实数x的取值范围是(一8,1U0,+8).12. 已知函数f(x) =x+ 3ax 1,g(x) =f(x) ax 5,其中f(x)是f(x)的导函数.对所以若函数g(x)在区间(t,3)上总不为单调函数,37则m的取值范围为一乜mK-2 2x y+ = 14+ +4-3,
9、62g(x) = 3xax+ 3a 5,令0(a) = (3 x)a+ 3x8 9 5, 1a 1.对一 14x+p 3 成立的x的取值范围是(a, 1)U(3,i)设f(p)=(x1)p+x24x+3,则当x=1 时,f(p)=0,所以x工 1.f(p)在 0WpW4上恒正,xjx 0,即2x10,解得x3 或xv1.n14._ (2017 豫北名校联考)已知定义在 R 上的单调递增奇函数f(x),若当 OWBWi时,f(cos0+msin0) +f( 2m- 2)v0 恒成立,则实数m的取值范围是 _.【导学号:07804155】1nm 2 当 0w 0 w时,f(cos0+msin0) +f( 2n 2)v0 恒成立,又函数nf(x)是奇函数,.当 0w 0 w时,f(cos0+ nsin0)vf(2 m+ 2)恒成立.0 v2n2 恒成立,即n2書0sin0 28的连线的斜率.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技改变生活课程设计
- 课程设计与实践摘要范文
- 维修设备管理课程设计
- 工地拆除施工合同范例
- 贸易挂靠经营合同范例
- 免息借款合同范本3篇
- 买车合同违约赔偿标准3篇
- 夫妻婚内保证协议书3篇
- 《我国刑事陪审制度研究》
- 合同中的会计要求和财务报告3篇
- 2023年计划订单专员年度总结及下一年规划
- 体质测试成绩表(自动统计数据)(小学、初中)
- 2022年全国垃圾分类知识竞赛试题库(附含答案与解析)
- 2024版医院手术安全管理学习培训课件
- 材料标准目录
- 脑卒中后吞咽障碍患者进食护理(2023年中华护理学会团体标准)
- 护士执业注册申请表 新
- 妊娠期高血压疾病诊治指南(2022版)解读
- 公章证照使用登记表
- 哈萨克斯坦劳动法中文版
- 装修工程竣工验收自评报告
评论
0/150
提交评论