版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章丰富的图形世界4从三个方向看物体的形状一、学情与教材分析1. 学情分析学生刚从小学升到中学,形象思维较弱,抽象水平较低。从不同的方向看,也正是立足于此,主要是引导学生从不同的角度观察几何体,因而多为直观的操作、感受,当然也需要进行一定的抽象,如从某个角度正视的结果抽象成形状图,由数(从上面看的形状图及其相应位置的立方体的数量)悟形(立体图形)、由形(立体图形)悟形(形状图) ,因而具有一定的抽象要求,但这样的抽象水平相对较低,学生应该已经具备这样的认知基础了。2. 教材分析在学生了解生活中的立体图形,立体图形的展开与折叠及截一个几何体等内容之后,安排本节内容从三个方向看物体的形状,力图拓
2、宽学生的思维,丰富学生对图形世界的认识。本节的教学任务是:首先初步体会从不同方向观察同一物体可能看到不同结果,能画出简单的三种形状图; 然后经历由搭建模型、 观察模型、画出三种形状图,到脱离模型、由数(从上面看的形状图及其相应位置的立方体的数量)悟形 (立体图形)、由形(立体图形)悟形(形状图) 、搭模验证等过程。本节通过让学生进行适当的说理,相对清晰地表达自己的思维,来发展学生的表达能力和推理能力,并在学习过程中逐步发展抽象思维及提高学习兴趣。二、教学目标:1、知识与技能目标:能识别简单物体的三种形状图,会画立方体及其简单组合的三种形状图,能根据三种形状图描述基本几何体或实物原形,会根据某几
3、何体的某两种形状图,找出满足条件的小正方块的数量。2、过程与方法目标:a 经历“从不同方向观察物体”的活动过程,发展学生的空间概念和合理的想象;b 在观察过程中,初步体会从不同方向观察同一物体得到的结果是不一样的;c 通过观察和动手操作, 经历和体验组合体及从上面看的形状图中数字的变化导致三种形状图的变化的过程,培养实验操作能力,进一步发展空间观念。3、情感与态度目标:培养学生重视实践、善于观察、主动探索、勇于发现、合作交流的品质。三、教学重难点:重点:会画立方体及其简单组合的三种形状图。难点:根据从上面看的形状图及其相应位置的立方体的数量,画出从正面看与从左面看的形状图。四、教法建议以学生为
4、主体,利用学生通俗易懂的图片、诗句来导入新课,激发学生学习数学的兴趣,并利用实物直观演示, 帮助学生对视图概念的理解。 让学生动手实践, 亲身体验,促进学生间的合作与交流。五、教学设计(一)课前设计1、预习任务任务 1:用橡皮泥制作成不同颜色的同样大小的立方块(多个). 任务 2: (1)观察生活中的3 个物体,分别从不同的方向看,你能看到什么形状?与同伴交流,或画下来 . (2) 用准备的立方块搭出不同的几何体, 从不同的方向看,你能看到什么形状?与同伴交流,或画下来 . 任务 3:看 p17议一议,先想一想,再用立方块模型拼一拼. 2、预习自测一选择题1下面几个几何体,主视图是圆的是()a
5、bc d答案: b 解析: a、主视图为正方形,故错误;b、主视图为圆,正确;c、主视图为三角形,故错误;d、主视图为长方形,故错误;故选: b思路点拨:掌握三视图的定义是关键. 2如图所示的几何体的左视图是()abcd 答案: d 解析:从左向右看,得到的几何体的左视图是中间无线条的矩形故选:d思路点拨:掌握三视图的定义是关键注意所有的看到的棱都应表现在三视图中3如图所示的几何体的主视图是()abcd答案: a 解析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中故选:a思路点拨:本题考查了三视图的知识,主视图是从物体的正面看得到的视图(二)课堂设计1、情境引入横看成岭侧
6、成峰,远近高低各不同,不识庐山真面目,只缘身在此山中。这一首苏东坡的诗,表现了观察庐山的几种方式:横看、侧看、远看、近看、身处山中看,也说明了观察物体是有讲究的,从三个方向看物体的形状这节课就是学习和研究观察物体的数学方法。从而引出课题从三个方向看物体的形状。设计意图: 创设实际情境,激发兴趣,使学生集中注意,同时引入课题. 效果:学生在情境的诱导下,因急于解决问题而进入了一种主动学习的状态,顺利进入下面的教学环节。2、探究发现活动 1:让学生观察这五张图片,回答分别是从哪个方位看到的?并在学生回答的基础上,请学生思考:同样的物体,为什么看到的不是一样的呢?揭示课题从三个方向看物体的形状。我们
7、从不同的方向观察同一物体时,通常可以看到不同的图形。(图片自拍)活动 2:在实际生活中,我们常常从正面、左面(或右面)和上面三个不同的方向看同一个物体,分别画出它们的平面图形,这样大体上就把一个物体的形状特征用平面图形表示出来了。如下面的由小正方块搭成的几何体,从正面看、从左面看和从上面看的平面图形分别为:在教师引导下得出三种形状图。设计意图: 循序渐进地提出问题(活动) ,让学生逐步感受从不同角度看结果不一样,逐步得到从正前方、正左方、正上方所看到的三种形状图的概念。效果:由于问题层次清晰,学生直接参与到活动过程中,学生较为顺利的获得了三种形状图,取得较好的效果。3、知识运用小试牛刀活动 1
8、: 画出下面几何体的从正面看、左面看、上面看所看到的形状图。设计意图: 学以致用,感受不同的方向观察几何体的不同性。注意事项与效果: 教学中可以让学生先思考片刻, 然后进行讨论和交流, 在交流过程中,要求学生描述出为什么是这样的,然后教师可以展示课件,让学生有一个更为清晰的认识。对于学生的表述,注意引导他们尽可能清楚、有条理地表述。活动 2:做一做 用课前准备的小正方体,以小组为单位,由一位同学搭几何体(可以变换不同的搭法),其他同学画出其三种形状图。能力提升活动 1:你搭我画教师用课前准备的小正方体呈现一个搭建的模型,引导学生思考:从正面看有几列,每一列有几层?从左面看呢?从上往下看呢?设计
9、意图: 学生亲自动手搭几何体模型,画出它的三种形状图,实际上提供了一个自主的操作活动,在活动中提供了大量关于三种形状图的巩固练习,既巩固了前面的知识,又为下面活动的展开提供了素材,同时在活动中学生进行的大量的想象活动,有效地发展学生的空间观念。从而力图脱离实物的观察,直接进入想象和分析的层面,同时该活动也为后续已知部分形状图及有关数据信息反向思考几何体的构成和其他形状图提供了理论基础。注意事项与效果: 活动相对比较开放学生的学习积极性也比较高,但教学中也要注意促进小组内同学之间的合作和交流,因为毕竟先前学生的小组活动经验相对有限,合作技能尚显不足,教师应致力于提高学生合作的技能和效益。最终有点
10、理论分析的味道,因此成为教学中一个难点,如果学生有困难,可让学生进一步实际观察。当然,由于在观察中学生教师要不断变换位置,也可以请学生思考,如何更简便地观察。在笔者的课堂中,学生提出:可以搬动物体,使得你所要看的那面正对自己。活动 2:问题探究一个几何体由几个大小相同的小立方块搭成,从上面看和从左面看所看到的形状图如图所示。搭出满足条件的几何体,你搭的几何体由几个小立方块搭成?与同伴交流。从上面看从左面看设计意图: 已知部分形状图及有关数据信息,反向思考几何体的构成,从而力图让学生从逐步脱离实物观察, 迫使学生进入真正的想象层面, 提高空间想象能力。 在此过程中,通过由问题到模型,由模型再到脱
11、离模型,较为完整地反映出一个问题解决的全貌。注意事项与效果: 教科书中,这是议一议,但教学中,不能仅仅停留于讲解,而应引导学生经历问题解决的过程。本问题相对而言难度较高,根据学生的状况,教师可以进行灵活的处理,如果学生不具备解决该问题的空间想象能力,建议还是让学生先自己搭出符合要求的几何体,在通过观察解决;如果学生空间想象能力许可,可以让学生直接想象该几何体的形状, 然后解释你所想象的几何体, 他人根据解释搭出符合要求的几何体;如果学生的空间想象能力更好, 可以让学生先自主脱离实物解决该问题,然后进行交流。教无定法,关键在于了解学生,选择适应学生的方法。活动 3:发展深化如图所示是由几个大小相
12、同的立方块所搭几何体从上面看所看到的形状图,小正方形中的数字表示在该位置小立方块的个数。请画出相应的几何体从正面看和从左面看所看到的形状图。可以看出,学生对于如何画几何体的三种形状图已经有了较清晰的思路:站对位置,数清层列。对于空间观念较强的同学, 已经可以脱离模型利用变通 (搬动物体) 的思想,来解决实际观察模型中的不方便。4、随堂检测一、选择题1下列四个几何体中,左视图为圆的是()2 3 1 abcd答案: d 解析:四个几何体的左视图:圆柱是矩形,圆锥是等腰三角形,球是圆,圆台是等腰梯形,故选 d 思路点拨:主要考查立体图形的左视图,关键是理解左视图的定义2如图,正三棱柱的主视图为()a
13、bcd答案: b 解析:正三棱柱的主视图是矩形,主视图中间有竖着的实线故选:b思路点拨:本题考查实物体的三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉3由 4 个相同的小立方体搭成的几何体如图所示,则它的主视图是()abcd 答案: a 解析:几何体的主视图有2 列,每列小正方形数目分别为2,1,故选 a思路点拨:本题画几何体的三视图时应注意小正方形的数目及位置4如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()abc d 答案: c 解析:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形故答案为: c
14、 思路点拨:主要考查了三视图的知识,关键是掌握三视图的几种看法注意所有的看到的棱都应表现在俯视图中5如图是由几个相同的小正方体搭成的几何体的三视图,则搭成这个几何体的小正方体的个数是()a4 个 b5 个 c6 个 d7 个答案: a 解析:由三视图可得,需要的小正方体的数目:1+2+1=4 如图:故选: a思路点拨:本题考查了几何体的三视图及空间想象能力二填空题6一个圆柱的俯视图是,左视图是答案:圆,矩形解析:一个圆柱的俯视图是圆,左视图是矩形思路点拨:一个物体从上往下看得到的图叫做俯视图,从左往右看得到的图叫做左视图,据此求解即可7如图,在常见的几何体圆锥、圆柱、球、长方体中,主视图与它的
15、左视图一定完全相同的几何体有(填编号)答案:解析:圆锥主视图是三角形,左视图也是三角形,圆柱的主视图和左视图都是矩形;球的主视图和左视图都是圆形;长方体的主视图是矩形,左视图也是矩形,但是长和宽不一定相同,故选:思路点拨: 主视图、左视图、俯视图是分别从物体正面、 左面和上面看, 所得到的图形三、解答题8画出如图所示的几何体的主视图、左视图、俯视图:答案:见解析解析:作图如下:思路点拨:考查的知识点是简单组合体的三视图,关键明确主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形5、课堂小结谈谈你在本节课的收获。(1)会画立方体及其简单组合的三种形状图(2)能根据三种形状图描述基
16、本几何体或实物原形(3)会根据某几何体的某两种形状图,找出满足条件的小正方块的数量布置作业: p18 习题 1.6 数学理解第 2,4 题6、分层作业基础型:一、选择题1下列四个几何体:其中左视图与俯视图相同的几何体共有()a1 个 b2 个 c3 个 d4 个答案: b 解析:正方体左视图、俯视图都是正方形,左视图与俯视图相同;球左视图、俯视图都是圆,左视图与俯视图相同;圆锥左视图、俯视图分别是三角形、有圆心的圆,左视图与俯视图不相同;圆柱左视图、俯视图分别是长方形、圆,左视图与俯视图不相同;即同一个几何体的左视图与俯视图相同的几何体共有2 个故选 b思路点拨:左视图、俯视图是分别从物体左面
17、和上面看,所得到的图形2图中几何体的左视图是()abc d答案: b 解析:从物体左面看,第一层3 个正方形,第二层左上角1 个正方形故选: b思路点拨:找到从左面看所得到的图形即可3如图是一些完全相同的小正方体搭成的几何体的三视图这个几何体只能是()abcd 答案: a 解析:由俯视图易得最底层有4 个正方体,综合主视图、左视图可知,第二层有1 个正方体,那么共有 4+1=5个正方体组成,一共有前后2 排,第一排有 3 个正方体,第二排有 2 层位于第一排中间的后面;故选 a思路点拨:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,主视
18、图疯狂盖,左视图拆违章”就更容易得到答案4将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()abc d答案: a 解析:从正面看易得主视图为长方形,中间有两条垂直地面的虚线故选 a思路点拨:找到从正面看所得到的图形即可, 注意所有的看到的棱都应表现在主视图中二、填空题5在长方体、球、圆锥、圆柱、三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是(填上序号即可)答案:解析:长方体主视图是长方形、左视图是长方形、俯视图也是长方形,但是长方形的边长不一样长;球主视图、左视图、俯视图都是圆;圆锥主视图、左视图都是三角形,俯视图是带圆心的圆;圆柱主视图、左视图都是长方形,俯视图是圆;三
19、棱柱主视图是长方形,中间还有一条竖线;左视图是长方形,俯视图是三角形. 思路点拨:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形判断出各图形的三视图即可得到答案6如图是某个几何体的三视图,该几何体是答案:圆锥解析:主视图和左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥 . 思路点拨:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状7如图,是由一些相同的小立方块搭成的几何体的三视图,则该几何体有块小立方体组成答案: 10 解析:根据三视图可知,这个几何体的底层应该有3+3+1=7个小正方体,第二层应该有 2 个小正方体,第三层应
20、该有 1 个小正方体,则该几何体共有小正方体的个数是7+2+1=10块思路点拨:此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查 如果掌握口诀“俯视图打地基, 正视图疯狂盖,左视图拆违章”就更容易得到答案能力型:一、选择题1从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是()abc d 答案: c 解析:如图所示:从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,该几何体的左视图为:故选: c思路点拨:此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键2一个正方体切去拐角后得到
21、形状如图的几何体,其俯视图是()abcd答案: c 解析:从上面看,是正方形右下角有阴影,故选c思路点拨:根据俯视图是从上面看到的图形判定则可3若某几何体的三视图如图,则这个几何体是()abcd答案: c 解析:该几何体的主视图为矩形,俯视图亦为矩形,左视图是一个三角形和一个矩形,故选: c思路点拨:主要考查的是三视图的相关知识.4如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数其中主视图相同的是()a仅有甲和乙相同 b仅有甲和丙相同c仅有乙和丙相同 d甲、乙、丙都相同答案: b 解析:根据分析可知,甲的主视图有2 列,每列小正方数形数
22、目分别为2,2;乙的主视图有 2 列,每列小正方数形数目分别为2,1;丙的主视图有 2列,每列小正方数形数目分别为 2,2;则主视图相同的是甲和丙故选: b思路点拨:由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同, 且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字二、解答题5如图,是一个小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的上数,请你画出它从正面和从左面看得到的平面图形答案:解析:由已知条件可知,主视图有3 列,每列小正方数形数目分别
23、为3,2,3,左视图有 2 列,每列小正方形数目分别为3,3据此可画出图形思路点拨:本题考查几何体的三视图画法由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字探究型:一、选择题1如图,由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是()a5 或 6 或 7 b6 或 7 c6 或 7 或 8 d7 或 8 或 9 答案: c 解析:根据几何体的左视图,可得这个几何体共有3 层,从俯视图可以看出最底层的个数是4 个,(1)当第一层有 1 个小正方体,第二层有1 个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个) ;(2)当第一层有 1 个小正方体,第二层有2 个小正方体时,或当第一层有 2 个小正方体,第二层有1 个小正方体时,组成这个几何体的小正方体的个数是:1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024二手房交易中介服务标准化协议版
- 2024年借款保障条款范本协议版
- 上海市普陀区2024-2025学年七年级上学期期中英语试题(解析版)
- 2024年企业财务报表审计与税务咨询合同
- 2024年住宅建筑施工协议标准模板版B版
- 江南大学《产品开发》2022-2023学年第一学期期末试卷
- 佳木斯大学《美学原理》2021-2022学年第一学期期末试卷
- 2024专用餐饮业务承包协议范本版B版
- 2024年人工智能技术咨询协议模版版
- 佳木斯大学《儿童发育保健护理》2021-2022学年第一学期期末试卷
- GB/T 44713-2024节地生态安葬服务指南
- 一年级家长会课件2024-2025学年
- 国开(浙江)2024年《个人理财》形考作业1-4答案
- 2024年教资考试时政高频考点141条
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 装修设计需求模版
- 欠薪清零台账
- 住房公积金单位网上业务申请表
- 锅炉安装工程—质量证明书(散装)
- 铁矿矿山环境保护与综合治理方案
- 施工进度计划网络图(模板)
评论
0/150
提交评论