四川省绵阳市剑阁七一中学2020年高三数学理测试题含解析_第1页
四川省绵阳市剑阁七一中学2020年高三数学理测试题含解析_第2页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、四川省绵阳市剑阁七一中学2020年高三数学理测试题含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 若曲线与曲线在交点处有公切线,则(a)(b)(c)(d)参考答案:b略2. 若满足约束条件则的最小值为(    )a-3         b0       c-4        d1参考答案:a

2、3. 已知函数的图象过点(1,0),则的反函数的图象一定过点(    )    a(1,2)  b(2,1)  c(0,2)  d(2,0)参考答案:a略4. 已知某程序框图如图所示,则输出的i的值为(     )a7      b8    c9     d10参考答案:c解:第一次循环,;第二次循环,;第三次循环,此时退出循环,输出,故选c5.

3、已知为实数集,则(     )a  b   c    d 参考答案:a略6. “”是“直线的倾斜角大于”的(    )a充分而不必要条件b必要而不充分条件c充分必要条件d既不充分也不必要条件 参考答案:a设直线的倾斜角为,则.若,得,可知倾斜角大于;由倾斜角大于得,或,即或,所以“”是“直线的倾斜角大于”的充分而不必要条件,故选a.7. 已知函数,则是最小正周期为的奇函数       &

4、#160;     最小正周期为的偶函数最小正周期为的奇函数             最小正周期为的偶函数参考答案:a8. 命题:,命题:,则下列命题为真命题的是(     )a.        b.          c.    

5、;    d.参考答案:【知识点】命题及其关系a2【答案解析】d  命题:为假命题,命题:假命题,所以为真命题,故选d。【思路点拨】根据命题间的关系判断真假。9. 若函数f(x)的导函数,则使得函数单调递减的一个充分不必要条件是x                  (    )a(0,1)      b0,2

6、      c(2,3)        d(2,4)   www.ks5                            高#考#资#源#网 参考答案:c略10. 已知集合,

7、b=x|y=ln(2-x),在ab=a. (1,3)b. (1,3c. -1,2)d. (-1,2)参考答案:c二、 填空题:本大题共7小题,每小题4分,共28分11. 函数f(x)=xex在点(1,f(1)处的切线的斜率是参考答案:2e考点: 利用导数研究曲线上某点切线方程专题: 导数的综合应用分析: 求出原函数的导函数,在导函数解析式中取x=1得答案解答: 解:f(x)=xex,f(x)=ex+xex,则f(1)=2e故答案为:2e点评: 本题考查学生会利用导数求曲线上过某点切线方程的斜率,考查了基本初等函数的导数公式,是基础题12. 已知函数f(x)=x|x2|,则不等式的解集为

8、0;    参考答案:1,+)【考点】函数的图象 【专题】函数的性质及应用【分析】化简函数f(x),根据函数f(x)的单调性,解不等式即可【解答】解:当x2时,f(x)=x|x2|=x(x2)=x2+2x=(x1)2+11,当x2时,f(x)=x|x2|=x(x2)=x22x=(x1)21,此时函数单调递增由f(x)=(x1)21=1,解得x=1+由图象可以要使不等式成立,则,即x1,不等式的解集为1,+)故答案为:1,+)【点评】本题主要考查不等式的解法,利用二次函数的图象和性质是解决本题的关键,使用数形结合是解决本题的基本思想13. 过点p(2,3)的直线l将

9、圆q:(x1)2+(y1)2=16分成两段弧,当形成的优弧最长时,则(1)直线l的方程为;(2)直线l被圆q截得的弦长为           参考答案:(1)x+2y8=0;(2)2考点:直线与圆的位置关系 专题:计算题;直线与圆分析:(1)设圆心为q(1,1),由圆的性质得,当直线lpq时,形成的优弧最长,l应与圆心与q点的连线垂直,求出直线的斜率即可得出直线l的方程;(2)求出圆心q(1,1)直线x+2y8=0的距离,利用弦长公式可得结论解答:解:(1)设圆心为q(1,1),由圆的性质得,当

10、直线lpq时,形成的优弧最长,此时kpq=2,所以直线l的斜率为于是由点斜式得直线l的方程为y3=(x2),即x+2y8=0;(2)圆心q(1,1)直线x+2y8=0的距离为d=,设直线l与圆q相交于点a,b,则弦长|ab|=2=2故答案为:x+2y8=0;2点评:本题考查直线与圆的位置关系和直线被圆截得弦长的计算第(1)问利用直线lpq时,形成的优弧最长可求出直线的斜率,进而求出直线l的方程;第(2)问先求出圆心到直线l的距离,再计算直线l被圆截得的弦长14. 曲线和曲线围成的图形面积是         

11、;   参考答案:略15. 给出下列四个命题,其中不正确命题的序号是             。若;函数的图象关于x=对称;函数为偶函数;函数是周期函数,且周期为2。参考答案:16. 已知函数则 _.  参考答案:略17. 已知函数,若方程有两个不同的实根,则实数k的取值范围是_参考答案:【分析】先利用导数刻画时的图像,再画出当时的图像,考虑函数的图像(动直线)与图像有两个交点,从而得到实数的取值范围.【详解】当时,当时,当时,又当时,所以根据周

12、期为1可得时的图像,故的图像如图所示:函数的图像恒过,因为与的图像有两个不同的交点,故,又,故,所以,填.【点睛】方程的解的个数可以转化为两个函数图像的交点个数去讨论,两个函数最好一个不含参数,另一个为含参数的常见函数(最好是一次函数),刻画不含参数的函数图像需要用导数等工具刻画其单调性、极值等,还需要利用函数的奇偶性、周期性等把图像归结为局部图像的平移或翻折等.三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. (本小题满分12分) 如图abcd是一块边长为100m的正方形地皮,其中atpn是一半径为90m的扇形小山,p是弧tn上一点,其余部分都是平地,现一

13、开发商想在平地上建造一个有边落在上的长方形停车场(如图所示),设。()用含有的式子表示矩形的面积;()求长方形停车场面积的最大值和最小值;参考答案:()由,为距形,得,又,5分()由()得   ,    8分为增函数;为减函数;的增区间为,减区间为      10分                   12分19. (

14、本小题满分12 分)函数f(x)asin(x)的部分图象如图所示(1)求f(x)的解析式;(2)设g(x),求函数g(x)在x上的最大值,并确定此时x的值参考答案:解析:(1)由图知a2,则4×,.又f2sin2sin0,sin0,0<<,<<,0,即,f(x)的解析式为f(x)2sin.(6分)(2)由(1)可得f2sin2sin,g(x)4×22cos,(8分)x,3x,当3x,即x时,g(x)max4.(12分) 略20. 已知函数f(x)=lnxa(x1),ar(1)当a=1时,求函数f(x)的单调区间;(2)当x1时,恒成立,求a

15、的取值范围参考答案:【考点】6e:利用导数求闭区间上函数的最值;6b:利用导数研究函数的单调性【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)令g(x)=xlnxa(x21)(x1),求出导函数g(x)=lnx+12ax,令f(x)=g(x)=lnx+12ax,求出f(x),通过讨论a的范围,分别判断函数的符号函数的单调性,求解函数的最值,然后求解a的取值范围【解答】解:(1)f(x)的定义域为(0,+),a=1时,令f'(x)0?0x1,f(x)在(0,1)上单调递增;令f'(x)0?x1,f(x)在(1,+)上单调递减综上,f(x)的单调递

16、增区间为(0,1),递减区间为(1,+)(2),令g(x)=xlnxa(x21)(x1),g'(x)=lnx+12ax,令h(x)=g'(x)=lnx+12ax,则若a0,h'(x)0,g'(x)在1,+)上为增函数,g'(x)g'(1)=12a0g(x)在1,+)上为增函数,g(x)g(1)=0,即g(x)0从而,不符合题意若,当时,h'(x)0,g'(x)在上单调递增,g'(x)g'(1)=12a0,同,所以不符合题意当时,h'(x)0在1,+)上恒成立g'(x)在1,+)递减,g'(x

17、)g'(1)=12a0从而g(x)在1,+)上递减,g(x)g(1)=0,即结上所述,a的取值范围是21. (本小题共13分)如图,在菱形中, 平面,且四边形是平行四边形()求证:;()当点在的什么位置时,使得平面,并加以证明.         参考答案:解:()连结,则.由已知平面,因为,所以平面.又因为平面,    所以.  6分  ()当为的中点时,有平面.7分与交于,连结.    由已知可得四边形是平行四边形,是的中点,因为是的中点,所以.10分又平面,平面,所以平面.13分  22. 已知函数f(x)=asin(x+)(xr,0,0)的部分图象如图所示()求函数f(x)的解析式;()求函数f(x)的单调递增区间参考答案:【考点】由y=asin(x+)的部分图象确定其解析式;正弦函数的单调性【专题】三角函数的图像与性质【分析】()由图象可求周期t,利用周期公式可求,由点(,0)在函数图象上,可得asin(2×+)=0,又结合0,从而+=,解得,又点(0,1)在函数图象上,可得asin=1,解得a,即可求得函数f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论