版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、武汉理工大学电力系统分析课程设计说明书电力系统编程潮流计算1 设计任务及初步分析1.1 设计任务条件:节点数:3 支路数:3 计算精度:0.00010支路1: 0.0300+j0.0900 12支路2: 0.0200+j0.0900 23支路3: 0.0300+j0.0900 31节点1:PQ节点,S(1)=-0.5000-j0.2000节点2:PQ节点,S(2)=-0.6000-j0.2500节点3:平衡节点,U(3)=1.00000.0000要求:编写程序计算潮流1.2 初步分析潮流计算在数学上可归结为求解非线性方程组,其数学模型简写如下: 2 牛顿-拉夫逊法简介2.1概述牛顿拉夫逊法是目
2、前求解非线性方程最好的一种方法。这种方法的特点就是把对非线性方程的求解过程变成反复对相应的线性方程求解的过程,通常称为逐次线性化过程,就是牛顿拉夫逊法的核心。牛顿-拉夫逊法的基本原理是在解的某一邻域内的某一初始点出发,沿着该点的一阶偏导数雅可比矩阵,朝减小方程的残差的方向前进一步,在新的点上再计算残差和雅可矩阵继续前进,重复这一过程直到残差达到收敛标准,即得到了非线性方程组的解。因为越靠近解,偏导数的方向越准,收敛速度也越快,所以牛顿法具有二阶收敛特性。而所谓“某一邻域”是指雅可比方向均指向解的范围,否则可能走向非线性函数的其它极值点,一般来说潮流由平电压即各母线电压(相角为0,幅值为1)启动
3、即在此邻域内。22 一般概念对于非线性代数方程组即 (21)在待求量的某一个初始计算值附件,将上式展开泰勒级数并略去二阶及以上的高阶项,得到如下的线性化的方程组 (22)上式称之为牛顿法的修正方程式。由此可以求得第一次迭代的修正量 (23)将和相加,得到变量的第一次改进值。接着再从出发,重复上述计算过程。因此从一定的初值出发,应用牛顿法求解的迭代格式为 (24) (25)上两式中:是函数对于变量的一阶偏导数矩阵,即雅可比矩阵;为迭代次数。由式(24)和式子(25)可见,牛顿法的核心便是反复形成求解修正方程式。牛顿法当初始估计值和方程的精确解足够接近时,收敛速度非常快,具有平方收敛特性。2.3
4、潮流计算的修正方程运用牛顿拉夫逊法计算潮流分布时,首先要找出描述电力系统的非线性方程。这里仍从节点电压方程入手,设电力系统导纳矩阵已知,则系统中某节点(节点)电压方程为从而得 进而有 (26)式(26)中,左边第一项为给定的节点注入功率,第二项为由节点电压求得的节点注入功率。他们二者之差就是节点功率的不平衡量。现在有待解决的问题就是各节点功率的不平衡量都趋近于零时,各节点电压应具有的价值。由此可见,如将式(26)作为牛顿拉夫逊中的非线性函数,其中节点电压就相当于变量。建立了这种对应关系,就可列出修正方程式,并迭代求解。但由于节点电压可有两种表示方式以直角做表或者极坐标表示,因而列出的迭代方程相
5、应地也有两种,下面分别讨论。2.4 直角坐标表示的修正方程节点电压以直角坐标表示时,令、,且将导纳矩阵中元素表示为,则式(27)改变为 (27)再将实部和虚部分开,可得 (28)这就是直角坐标下的功率方程。可见,一个节点列出了有功和无功两个方程。对于节点(),给定量为节点注入功率,记为、,则由式(28)可得功率的不平衡量,作为非线性方程(29)式中、分别表示第节点的有功功率的不平衡量和无功功率的不平衡量。对于节点(),给定量为节点注入有功功率及电压数值,记为、,因此,可以利用有功功率的不平衡量和电压的不平衡量表示出非线性方程,即有(210)式中为电压的不平衡量。对于平衡节点(),因为电压数值及
6、相位角给定,所以也确定,不需要参加迭代求节点电压。因此,对于个节点的系统只能列出个方程,其中有功功率方程个,无功功率方程个,电压方程个。将式(29)、式(210) 非线性方程联立,称为个节点系统的非线性方程组,且按泰勒级数在、()展开,并略去高次项,得到以矩阵形式表示的修正方程如下。 (211)上式中雅可比矩阵的各个元素则分别为 将(211)写成缩写形式 (212)对雅可比矩阵各元素可做如下讨论:当时,对于特定的,只有该特定点的和是变量,于是雅可比矩阵中各非对角元素表示为 当时,雅可比矩阵中各对角元素的表示式为由上述表达式可知,直角坐标的雅可比矩阵有以下特点:1) 雅可比矩阵是阶方阵,由于、等
7、等,所以它是一个不对称的方阵。2) 雅可比矩阵中诸元素是节点电压的函数,在迭代过程中随电压的变化而不断地改变。3) 雅可比矩阵的非对角元素与节点导纳矩阵中对应的非对角元素有关,当中的为零时,雅可比矩阵中相应的、也都为零,因此,雅可比矩阵也是一个稀疏矩阵。3 程序设计3.1 程序流程图图3-1 程序流程图3.2 源程序n=3n1=3isb=3pr=0.0001B1=1 2 0.03+0.09i 0 1 0;1 3 0.03+0.09i 0 1 0;2 3 0.02+0.09i 0 1 0B2=0 -0.5-0.2i 1 0 0 2;0 -0.6-0.25i 1 0 0 2;0 0 1 1 0 1
8、X=1 0;2 0;3 0%X=input('节点号和对地参数:X='); Y=zeros(n); Times=1; %置迭代次数为初始值 %创建节点导纳矩阵 for i=1:n1 if B1(i,6)=0 %不含变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q)=Y(p,q)-1/B1(i,3); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4); Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4); else %含有变压器的支路 p=B1(i,1); q=B1(i,2); Y(p,q
9、)=Y(p,q)-1/(B1(i,3)*B1(i,5); Y(q,p)=Y(p,q); Y(p,p)=Y(p,p)+1/B1(i,3); Y(q,q)=Y(q,q)+1/(B1(i,5)2*B1(i,3); end end Y OrgS=zeros(2*n-2,1); DetaS=zeros(2*n-2,1); %将OrgS、DetaS初始化 %创建OrgS,用于存储初始功率参数 h=0; j=0; for i=1:n %对PQ节点的处理 if i=isb&B2(i,6)=2 h=h+1; for j=1:n OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,
10、3)*(real(Y(i,j)*real(B2(j,3)-imag(Y(i,j)*imag(B2(j,3)+imag(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*real(B2(j,3); OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3)*(real(Y(i,j)*real(B2(j,3)-imag(Y(i,j)*imag(B2(j,3)-real(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*real(B2(j,3); end end end for i=1:n %对PV节点
11、的处理,注意这时不可再将h初始化为0 if i=isb&B2(i,6)=3 h=h+1; for j=1:n OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3)*(real(Y(i,j)*real(B2(j,3)-imag(Y(i,j)*imag(B2(j,3)+imag(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*real(B2(j,3); OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3)*(real(Y(i,j)*real(B2(j,3)-imag(Y(i,j)*imag(B2(j
12、,3)-real(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*real(B2(j,3); end end end OrgS %创建PVU 用于存储PV节点的初始电压 PVU=zeros(n-h-1,1); t=0; for i=1:n if B2(i,6)=3 t=t+1; PVU(t,1)=B2(i,3); end end PVU %创建DetaS,用于存储有功功率、无功功率和电压幅值的不平衡量 h=0; for i=1:n %对PQ节点的处理 if i=isb&B2(i,6)=2 h=h+1; DetaS(2*h-1,1)=real(
13、B2(i,2)-OrgS(2*h-1,1); DetaS(2*h,1)=imag(B2(i,2)-OrgS(2*h,1); end end t=0; for i=1:n %对PV节点的处理,注意这时不可再将h初始化为0 if i=isb&B2(i,6)=3 h=h+1; t=t+1; DetaS(2*h-1,1)=real(B2(i,2)-OrgS(2*h-1,1); DetaS(2*h,1)=real(PVU(t,1)2+imag(PVU(t,1)2-real(B2(i,3)2-imag(B2(i,3)2; end end DetaS %创建I,用于存储节点电流参数 i=zeros(
14、n-1,1); h=0; for i=1:n if i=isb h=h+1; I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1)/conj(B2(i,3); end end I %创建Jacbi(雅可比矩阵) Jacbi=zeros(2*n-2); h=0; k=0; for i=1:n %对PQ节点的处理 if B2(i,6)=2 h=h+1; for j=1:n if j=isb k=k+1; if i=j %对角元素的处理 Jacbi(2*h-1,2*k-1)=-imag(Y(i,j)*real(B2(i,3)+real(Y(i,j)*imag(B2(i
15、,3)+imag(I(h,1); Jacbi(2*h-1,2*k)=real(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3)+real(I(h,1); Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1); Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1); else %非对角元素的处理 Jacbi(2*h-1,2*k-1)=-imag(Y(i,j)*real(B2(i,3)+real(Y(i,j)*imag(B2(i,3); Jacbi(2*h-1,2*k)=r
16、eal(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3); Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k); Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1); end if k=(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行 k=0; end end end end end k=0; for i=1:n %对PV节点的处理 if B2(i,6)=3 h=h+1; for j=1:n if j=isb k=k+1; if i=j %对角元素的处理 Jacbi(2*h-1,2*k-1)=-imag(
17、Y(i,j)*real(B2(i,3)+real(Y(i,j)*imag(B2(i,3)+imag(I(h,1); Jacbi(2*h-1,2*k)=real(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3)+real(I(h,1); Jacbi(2*h,2*k-1)=2*imag(B2(i,3); Jacbi(2*h,2*k)=2*real(B2(i,3); else %非对角元素的处理 Jacbi(2*h-1,2*k-1)=-imag(Y(i,j)*real(B2(i,3)+real(Y(i,j)*imag(B2(i,3); Jacbi(2*h-1,
18、2*k)=real(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3); Jacbi(2*h,2*k-1)=0; Jacbi(2*h,2*k)=0; end if k=(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行 k=0; end end end end end Jacbi %求解修正方程,获取节点电压的不平衡量 DetaU=zeros(2*n-2,1); DetaU=inv(Jacbi)*DetaS; DetaU %修正节点电压 j=0; for i=1:n %对PQ节点处理 if B2(i,6)=2 j=j+1; B2(i,3)=B
19、2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1); end end for i=1:n %对PV节点的处理 if B2(i,6)=3 j=j+1; B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1); end end B2 while abs(max(DetaS)>pr OrgS=zeros(2*n-2,1); %!初始功率参数在迭代过程中是不累加的,所以在这里必须将其初始化为零矩阵 h=0; j=0; for i=1:n if i=isb&B2(i,6)=2 h=h+1; for j=1
20、:n OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3)*(real(Y(i,j)*real(B2(j,3)-imag(Y(i,j)*imag(B2(j,3)+imag(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*real(B2(j,3); OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3)*(real(Y(i,j)*real(B2(j,3)-imag(Y(i,j)*imag(B2(j,3)-real(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*r
21、eal(B2(j,3); end end end for i=1:n if i=isb&B2(i,6)=3 h=h+1; for j=1:n OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3)*(real(Y(i,j)*real(B2(j,3)-imag(Y(i,j)*imag(B2(j,3)+imag(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*real(B2(j,3); OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3)*(real(Y(i,j)*real(B2(j,3)-imag(
22、Y(i,j)*imag(B2(j,3)-real(B2(i,3)*(real(Y(i,j)*imag(B2(j,3)+imag(Y(i,j)*real(B2(j,3); end end end OrgS %创建DetaS h=0; for i=1:n if i=isb&B2(i,6)=2 h=h+1; DetaS(2*h-1,1)=real(B2(i,2)-OrgS(2*h-1,1); DetaS(2*h,1)=imag(B2(i,2)-OrgS(2*h,1); end end t=0; for i=1:n if i=isb&B2(i,6)=3 h=h+1; t=t+1; De
23、taS(2*h-1,1)=real(B2(i,2)-OrgS(2*h-1,1); DetaS(2*h,1)=real(PVU(t,1)2+imag(PVU(t,1)2-real(B2(i,3)2-imag(B2(i,3)2; end end DetaS %创建I i=zeros(n-1,1); h=0; for i=1:n if i=isb h=h+1; I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1)/conj(B2(i,3); end end I %创建Jacbi Jacbi=zeros(2*n-2); h=0; k=0; for i=1:n if B2
24、(i,6)=2 h=h+1; for j=1:n if j=isb k=k+1; if i=j Jacbi(2*h-1,2*k-1)=-imag(Y(i,j)*real(B2(i,3)+real(Y(i,j)*imag(B2(i,3)+imag(I(h,1); Jacbi(2*h-1,2*k)=real(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3)+real(I(h,1); Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1); Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*ima
25、g(I(h,1); else Jacbi(2*h-1,2*k-1)=-imag(Y(i,j)*real(B2(i,3)+real(Y(i,j)*imag(B2(i,3); Jacbi(2*h-1,2*k)=real(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3); Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k); Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1); end if k=(n-1) k=0; end end end end end k=0; for i=1:n if B2(i,6)=3 h=h+1;
26、for j=1:n if j=isb k=k+1; if i=j Jacbi(2*h-1,2*k-1)=-imag(Y(i,j)*real(B2(i,3)+real(Y(i,j)*imag(B2(i,3)+imag(I(h,1); Jacbi(2*h-1,2*k)=real(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3)+real(I(h,1); Jacbi(2*h,2*k-1)=2*imag(B2(i,3); Jacbi(2*h,2*k)=2*real(B2(i,3); else Jacbi(2*h-1,2*k-1)=-imag(Y(i,j)*rea
27、l(B2(i,3)+real(Y(i,j)*imag(B2(i,3); Jacbi(2*h-1,2*k)=real(Y(i,j)*real(B2(i,3)+imag(Y(i,j)*imag(B2(i,3); Jacbi(2*h,2*k-1)=0; Jacbi(2*h,2*k)=0; end if k=(n-1) k=0; end end end end end Jacbi DetaU=zeros(2*n-2,1); DetaU=inv(Jacbi)*DetaS; DetaU %修正节点电压 j=0; for i=1:n if B2(i,6)=2 j=j+1; B2(i,3)=B2(i,3)+D
28、etaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1); end end for i=1:n if B2(i,6)=3 j=j+1; B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1); end end B2 Times=Times+1; %迭代次数加1 end disp('迭代次数为');disp(Times)for no=1:n Vn(no)=B2(no,3);str1 = sprintf('节点%d的电压是%d',no);disp(str);disp(Vn(no);end3.3 结果及分
29、析节点导纳矩阵为Y= 6.6667 -j20.0000 -3.3333 +j10.0000 -3.3333 +j10.0000-3.3333 +j10.0000 5.6863 -j20.5882 -2.3529 +j10.5882-3.3333 +j10.0000 -2.3529 +j10.5882 5.6863 -j20.5882迭代运行了3次,每次功率的不平衡量表3-1所示表3-1 迭代过程中各节点的功率不平衡量kP1(k)+jQ1(k)P2(k)+jQ2(k)0-0.5-j0.2-0.6-j0.251-0.0083-j0.0279-0.0091-j0.03602-0.0000297-j0
30、.0000955-0.0000326-j0.000133230.0000+j0.00000.0000+j0.0000表3-2 迭代过程中各节点电压ke1(k)+jf1(k)e2(k)+jf2(k)10.9664 - j0.04230.9658 - j0.045720.9632 - j0.04230.9623 - j0.045730.9632 - j0.04230.9623 - j0.0457平衡节点功率为P3+jQ3= 1.1188 +j0.5188下面计算网络中的功率分布,根据所有线路功率计算如下:S12=(0.9632-j0.0423)(0.9632+j0.0423)×0+(0.9632+j0.0423)-(0.9623+j0.0457)×(3.33+j10)=0.0355 - j0.0042 S13=0.9632-j0.04230.9632+j0.0423*0+0.9632+j0.0423-1×-5.6863-j20.5882=-0.5355 - j0.1958同样可以得出 S21= -0.0354 + j0.0043 S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 果园承包合同模板大全
- 农村土地买卖合同范本
- 学校租用轿车合同协议
- 购房担保借款协议
- 农业住宅转让协议书参考
- 工伤赔偿协议书模板
- 2024合作共赢协议格式
- 广告合同范本2027
- 框架结构课程设计范例
- 租赁合同范本2024年
- 民间借贷利息计算表
- 沪科版(2024)八年级全一册物理第一学期期中学业质量测试卷 2套(含答案)
- 化工和危险化学品生产经营单位二十条重大隐患判定标准释义(中化协)
- 愚公移山英文 -中国故事英文版课件
- 课件交互设计
- 《线性代数》教案完整版教案整本书全书电子教案
- 液压设计常用资料密封沟槽尺寸
- 自动化控制仪表安装工程采用材料及机械价格表(2014版江苏省)
- 八卦象数疗法
- 鲁人版九年级道德与法治上册 2.3一年一度的人民代表大会
- 上海市重点建设项目社会稳定风险评估咨询收费办法
评论
0/150
提交评论