常微分方程期末试题答案6页_第1页
常微分方程期末试题答案6页_第2页
常微分方程期末试题答案6页_第3页
常微分方程期末试题答案6页_第4页
常微分方程期末试题答案6页_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、填空题(每空2 分,共16分)。1、方程满足解的存在唯一性定理条件的区域是xoy平面2. 方程组的任何一个解的图象是 n+1 维空间中的一条积分曲线.3连续是保证方程初值唯一的 充分 条件4方程组的奇点的类型是 中心 5方程的通解是6变量可分离方程的积分因子是7二阶线性齐次微分方程的两个解,成为其基本解组的充要条件是 线性无关 8方程的基本解组是 二、选择题(每小题 3 分,共 15分)。9一阶线性微分方程的积分因子是( A )(A) (B) (C) (D)10微分方程是( B )(A)可分离变量方程 (B)线性方程 (C)全微分方程 (D)贝努利方程11方程x(y21)dx+y(x21)

2、dy=0的所有常数解是( C )(A) (B) (C), (D), 12阶线性非齐次微分方程的所有解( D ) (A)构成一个线性空间 (B)构成一个维线性空间 (C)构成一个维线性空间 (D)不能构成一个线性空间13方程( D )奇解(A)有一个 (B)有无数个 (C)只有两个 (D)无三、计算题(每小题8分,共48分)。14求方程的通解解:令,则 ,于是, 所以原方程的通解为 15求方程的通解解:取则,于是原方程为全微分方程所以原方程的通解为 即 16求方程的通解解:令 ,得到 (*) ,两端同时关于求导,整理得 ,则取 ,得 ,代入(*) 得解 取 ,得,代入(*)得原方程得通解为 17

3、求方程的通解解 对应的齐次方程的特征方程为 ,特征根为 , 故齐次方程的通解为 因为不是特征根。所以,设非齐次方程的特解为 代入原方程,得 即 , 故原方程的通解为 18求方程的通解解:先求解对应的其次方程:,则有,因为数不是特征根,故原方程具有形如 的特解。将上式代入原方程,由于 故 或 比较上述等式两端的的系数,可得 因此,故所求通解为19求方程组的实基本解组解:方程组的特征多项式为 ,其特征根是,那么 属于的特征向量, 属于的特征向量。则方程的基本解组为,其实基本解组为。而因此所求实基本解组为四、应用题(每小题 11 分,共11分)。20(1)求函数的拉普拉斯变换(2)求初值问题的解解:(1)(2)设,是已知初值问题的解。对已知方程两端同时使用拉普拉斯变换,可分别得到 故有 使用部分分式法,可得 由(1)可知,故所求的初值解为 。五、证明题(每小题10分,共10分)。21 证明:对任意及满足条件的,方程的满足条件的解在上存在。证: 由于 在全平面上连续,所以原方程在全平面上满足解的存在唯一性定理及解的延展定理条件又显然是方程的两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论