高中数学6.1.2系统抽样教案苏教版必修_第1页
高中数学6.1.2系统抽样教案苏教版必修_第2页
高中数学6.1.2系统抽样教案苏教版必修_第3页
高中数学6.1.2系统抽样教案苏教版必修_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第17课时系统抽样【学习导航】 学习要求 1体会系统抽样的的概念及如何用系统抽样获取样本;2感受系统抽样也是等可能性抽样,是否需要用系统抽样,主要是看总体个数的多少. 【课堂互动】自学评价案例1 某校高一年级有20个班,每班有50名学生为了了解高一学生的视力状况,从这1000人中抽取一个容量为100的样本进行检查,应该怎样抽样?【分析】这个案例的总体中个体数较多,生活中还有容量大的多的总体,面对这样的总体,采用抽签或随机数表等简单随机抽样方法是不科学的抽取样本最关键的就是要保证抽样过程的公平性,要保证总体中每个个体被抽到的机会均等在这样的前提下,我们可以寻求更好的抽样方法系统抽样以简单随机抽样

2、为基础,通过将较大容量的总体分组,只需在某一个组内用简单随机抽样方式来获取一个个体,然后在一定规则下就能抽取出全部样本.1.系统抽样 系统抽样的概念: 将总体平均分成几个部分,然后按照一定的规则,从每个部分中抽取一个个体作为样本,这样的抽样方法称为系统抽样(systematic sampling)系统抽样的步骤为:(1)采用随机的方式将总体中的个体编号;(2)将整个的编号按一定的间隔(设为k)分段,当N/n (N为总体中的个体数,n为样本容量)是整数时,k=N/n;当N/n不是整数时,从总体中剔除一些个体 ,使剩下的总体中个体的个数N能被n整除,这时,k=N/n并将剩下的总体重新编号;(3)在

3、第一段中用简单随机抽样确定起始的个体编号L;(4)将编号为L,L+k,L+2k,L+(n-1)k的个体抽出.【小结】系统抽样是以简单随机抽样为基础的一种抽样方法,对于容量较大、个体差异不明显的总体通常采用这种抽样方法,在保证公平客观的前提下简化抽样过程在用系统抽样方法抽取样本时,如果总体个数不能被样本容量整除,可以从总体中剔除一些个体,使剩下的总体中的个体的个数能被样本容量整除.【经典范例】例1 在1 000个有机会中奖的号码(编号为000999)中,在公证部门监督下随机抽取的方法确定后两位数为88的号码为中奖号码,这是运用哪种抽样方法来确定中奖号码的?依次写出这10个中奖号码?【解】本题中是

4、运用了系统抽样的方法来确定中奖号码的,中奖号码依次为:088,188,288,388,488,588,688,788,888,988例2 某单位在岗职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查试采用系统抽样方法抽取所需的样本.【分析】 因为624的10%约为62,624不能被62整除,为了保证“等距”分段,应剔除4人【解】 第一步 将624名职工用随机方式进行编号;第二步 从总体中剔除4人(剔除方法可用随机数表法),将剩下的620名职工重新编号(分别为000,001,002,619),并分成62段;第三步 在第一段000,009这十个编号中用简单随机抽样确定起始

5、号码i0;第四步 将编号为i0,i0+10,i0+610的个体抽出,组成样本例3 某制罐厂每小时生产易拉罐10 000个,每天生产时间为12h,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1 200个进行检测,请你设计一个抽样方案。 【解】每天共生产易拉罐120 000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001100中随机选出一个编号,例如选出的是013号,则从第13个易拉罐开始,每隔100个,拿出一个送检,或者根据每小时生产10 000个,每隔s拿出一个易拉罐送检。例4 现要从999名报名者中随机选取100名参加某活动,

6、请你用系统抽样法设计一种方案,叙述其步骤。你能找到另外的抽样方案吗?比较两种方案的合理性和易操作性【解】按系统抽样法,因为100不能整除999,所以首先将999人编号,采用随机数表法剔除99名,再将剩下的900名报名者重新编号001900,从001号顺次下去每9人一组,等分成100组,利用抽签法或随机数表法,从19个数中随机选出一个数,新编号为该数字加上9的倍数的报名者入选。例如选出的随机数为3,则新编号为003,012,021,894共100人入选。还可以采取以下抽样方法:首先将999名报名者编号为001999,因为111可以整除999,将这999个编号从001开始顺次每9个一组,然后选用简

7、单随机抽样法从19的9个数字中随机地抽出一个数字,编号为该数字加上9的倍数的共111名报名者先挑选出来,例如:随机抽到的是7,则编号为007,016,025,,988,997共111名,最后,再利用随机数表从111名中随机抽取11名剔除。点评:此方法较之系统抽样法更易操作,因为虽然999不能被100整除,但余数99非常大,接近于除数100,而且采用随机数表法从999个数字中随机抽出 99个数剔除的工作量也较大。后一种方法先通过系统抽样,随机抽取111名,再利用随机数表法,从111个数字中随机抽出11个来剔除,操作起来要相对方便得多。追踪训练1为了了解参加一次知识竞赛的1 252名学生的成绩,决

8、定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除个体的数目是(A)(A)2(B)3(C)4(D)5 2全班有50位同学,需要从中选取7人,若采用系统抽样的方法来选取,则每位同学能被选取的可能性是3一个总体中有100个个体,随机编号为0,1,2, ,99,依编号顺序平均分成10个小组,组号依次为1,2,3, ,10现用系统抽样的方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为,那么在第组中抽取的号码个位数字与的个位数字相同若,则在第7组中抽取的号码是_63_ 4. 要从1003名学生中选取一个容量为20的样本,试叙述系统抽样的步骤。【解】第一步 将1003名学生有

9、随机方式进行编号;第二步 从总体中剔除3人(剔除方法可用随机数表法),将剩下的1000名学生重新编号并分成20段;第三步 在第一段000、001、002、003、049这十个编号中用简单随机抽样确定起始号码,比如013第四步 将013逐次加上部分的“长度”(第一部分中个体的个数)的0倍、1倍、2倍、19倍得到样本:013、063、113、163、963.第2课时6.1.2系统抽样分层训练1为了解高三学生身体状况,某学校将高三每个班学号的个位数为1的学生选作代表进行调查体检,这种抽样方法称为 ( )(A)系统抽样 (B)抽签法 (C)简单随机抽样 (D)随机数表法2系统抽样适用的范围是 ( )

10、(A)总体中个数较少 (B)总体中个数较多 (C)总体由差异明显的几部分组成(D)以上均可以3要从已编号(150)的50辆新生产的赛车中随机抽取5辆进行检验,用系统抽样方法确定所选取的5辆赛车的编号可能是 ( ) (A)5,10,15,20,25 (B)3,13,23,33,43, (C)5,8,11,14,17 (D)4,8,12,16,204从2321个产品中选取一个容量为30的样本,那么总体中应随机剔除的个体数目是( )(A)1 (B)11 (C)21 (D)31 5下列抽样是系统抽样的是_A:从标有115号的15个球中,任选三个作为样本,按从小号到大号排序,随机选起点k,以后k+5,k

11、+10(超过15则从1再数起)号入样。B:工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔5分钟抽一件产品进行检验。C:搞某一市场调查,规定在商场门口随机抽一个人进行询问调查,直到调查到事先规定调查人数为止。D:报告厅对与会听众进行进行调查,通知每排(每排人数相等)座位号为14的观众留下来座谈。6某中学组织春游,为了确定春游地点,打算从该校学号为00342037的所有学生中,采用系统抽样选50名进行调查,则学号为2003的同学被选中的可能性为_7某工厂有103名工人,从中抽取10人参加体检,试采用简单随机抽样和系统抽样两种方法进行抽样8简述系统抽样与简单随机抽样之间的联系与区别。思

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论