下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 注重数形结合思想发展数学核心素养 董靖宇摘 要 高中数学蕴含着许多数学思想,如化归与类比、分类讨论与特殊化、函数与方程思想,这些思想和高中数学的所有内容又有着密切的联系. 文章主要围绕数形结合思想展开讨论,从挖掘思想、渗透思想和深化思想三方面着手阐述数形结合思想的重要性和应用性.关键词 数形结合;高中数学;核心素养每一段文字都有着自己的表达意义,每一篇文章都蕴含着自己的中心思想,同样每一门学科都有自己的学科思想,数学学科亦是如此. 数形结合思想在数学学科中有着十分重要的地位,它是抽象的数量关系与直观的图形结构结合在一起的思想方法
2、,它巧妙地把空间、数量联系在一起进行解题,应该被学生重视和学习.?立足教材,挖掘思想教材是学生学习的根基,通过教材内容的变更不难发现当下数学核心素养的重要性,如立体几何章节加入向量解法,这些改变暗示着教师的教学要重视数形结合思想,引领学生深入挖掘教材.以人教版数学必修五中“解不等式”课堂为例,在课本84页“互联网消费”探究最终问题指向求一元二次不等式x2-5x0<x< p>0<x< p>数形结合思想在高中数学教材课本中随处可见,无论是在探究方法中应用,还是在总结中体现,教师对此都要进行深入讲解和探讨. 在教学课堂中强调数形结合思想,不仅能帮助学生解读课本,还
3、能培养提升学生的素养水平.?优化教学,渗透思想如果说数学知识是构建数学大厦的砖瓦,那么数学思想是搭建数学大厦的骨架,只有掌握了一定的数学思想才能在一定高度上学习数学知识,作为数学思想其中的一员,数形结合思想拥有着无可比拟的重要地位. 教师应针对现有的教学模式进行优化,让数形结合思想有效渗透在学生的学习中.首先,教师可以注重在概念教学中渗透数形结合思想,数学概念的形成需要过程和时间,教学数学加入思想不仅能帮助学生高效理解和掌握相关概念,还能使学生感知和应用数形结合. 以“数列”概念教学为例,等差数列和等比数列是两种不同类型的数列,只通过解析式区分两者之间的差异对一些学生而言仍然无济于事. 教师不
4、妨考虑将等比数列和等差数列转化为函数图像表示,直观的图像不仅让学生看清两者之间的区别,还能帮助学生理解数列求和与最值问题. 其次,教师还应该在例题教学中合理渗透数形结合思想,以此提升学生读题、解题能力.如例题所示,函数y=f(x)在(0,2)上是增函数,且关于x的函数g(x)=f(x+2)是偶函数,则有( )a. f<f(2)<f(3)< p>b. f(3)<f(2)<f< p>c. f<f(3)<f(2)< p>d. f(2)<f(3)<f< p>解答该问题需要应用函数的
5、单调性和奇偶性,由g(-x)=f(-x+2)=g(x)可以得到f(x+2)=f(-x+2),即y=f(x)是关于直线x=2对称的函数,最后根据函数的单调性得出答案. 答题过程中很多学生得到最后的結论却选错答案,往往是因为没有画图明确三个数字之间的大小关系. 在类似问题中,教师每次结合图像进行分析,学生也能潜移默化地学会利用图形和计算一起分析解决问题.数形结合思想对于学生而言,也同概念定义一般,是一种抽象模糊的存在. 但将数形结合思想渗透在教学的方方面面中,学生便能感知并应用. 因此,教师可以选择在概念教学、例题解析等方面加入数形结合思想,帮助学生牢记教学概念,提升学生读题、解题能力.?合理运用
6、,深化思想一提起数形结合,固定化思维可能会让学生联想到函数和导数,很有可能就止步于此. 但其实数形结合思想与数学中许多内容都能适配,如在集合、立体几何、不等式以及方程中都能见其身影,因此教师可以尝试在不同章节联系数形结合思想进行教学.在集合章节中,一些有交集的问题通过画图往往能获得更加清晰的答案,如学校一名学生能够加入两个社团的问题,教师可以考虑在教学过程中多加一个画文氏图的步骤,教会学生画文氏图,并让学生能够把集合和文氏图联系在一起,分析思路更加清晰明确;在立体几何章节中,往常教师直接作图指导学生如何计算二面角的大小,过于抽象的方法会让一些学生摸不着头脑,这时教师应引导学生使用向量方法建立坐
7、标系计算不常规的二面角,降低学习立体几何难度的同时也能树立学生的自信心;在三角函数章节中,数形结合的运用能得到意想不到的结果,如求函数y=的值域问题,教师提出类比斜率公式y=,并与图像结合,由此找到答案,这种另辟蹊径的思考方式能拓宽学生的思维,增加学生的创造性. 数形结合在许多章节都展现着独特的优势,教师和学生只有合理运用,才能深入体会其中的妙处. 过度的题海战术不应该被师生推崇,但适当的练习也是必要的,每一次分析讲解练习题,教师可以让学生尝试应用数形结合思想解题,反复强化同样能提升学生对数形结合的理解和运用.数形结合思想与不同章节的组合都是一种惊喜,在每一道习题的解题中出现都是一种创造,这是教师应该落实在教学上的事情,也是学生通过反复实践得到的发现. 只有合理运用数学思想,才能不断发现其中的每一面,并全面认识理解其中的含义所在.总之,数形结合思想的培养学习是一个漫长的过程,首先教师以教材为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年制定的幼儿园劳动协议范本细则版B版
- 2024年商业信用担保协议标准格式版B版
- 2024年创新产品知识产权合作合同版B版
- 2024专业借款协议格式版B版
- 江南大学《复变函数与积分变换》2021-2022学年第一学期期末试卷
- 江南大学《产品工程设计基础》2022-2023学年第一学期期末试卷
- 佳木斯大学《美学》2021-2022学年第一学期期末试卷
- 2024年地产企业与教育机构协作开发项目协议范本版
- 2024年加盟合作经营合同样本版B版
- 佳木斯大学《儿科学》2021-2022学年第一学期期末试卷
- 体育行业赛事组织与管理手册
- 《垃圾填埋场改造项目可行性研究报告》
- 国家级紧急医学救援队伍建设规范
- 2024年中国国际技术智力合作限公司及下属单位招聘高频难、易错点500题模拟试题附带答案详解
- 临终患者的心理护理
- 三农田水利设施管理与维护手册
- 电费管理与节能降耗实施方案
- 肾病综合征治疗指南
- 2024年7月时事政治试题带答案
- 医学课件乳腺疾病5
- 垃圾分类知识竞赛200题(100道单选-100道多选-有答案)
评论
0/150
提交评论