下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2章 特殊三角形2.3 等腰三角形的性质定理第2课时 等腰三角形的性质定理21、经历利用轴对称变换推导等腰三角形的性质,并加深对轴对称变换的认识. 2、掌握等腰三角形的下列性质:等腰三角形的两个底角相等;等腰三角形三线合一3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图.理解并掌握等腰三角形的性质:等边对等角;三线合一.等腰三角形三线合一性质的运用.1.温故检测:叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是。2.悬念、引子、思考:将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗?1等腰三角形的性质合作学习:分三组教学活动材料教学活动材料1:如图25,
2、在等腰三角形ABC中,ABAC,AD平分BAC,交BC于D,(1)把这个等腰三角形剪下来,然后沿着顶角平分线对折,仔细观察重合的部分,并写出所发现的结论。(2)你发现了等腰三角形的哪些性质?教学活动材料2:如图25,在等腰三角形ABC中,ABAC,AD平分BAC,交BC于D,(1)根据我们已经获得的等腰三角形是轴对称图形,图2-5中等腰三角形ABC的对称轴是什么?ABD各个顶点的对称点分别是什么?由此可见,将ABD作关于直线AD的轴对称变换,所得的像是什么?(2)根据轴对称变换的性质:轴对称变换不改变图形的形状和大小.找出图中的全等三角形,以及所有相等的线段和相等的角.(3)你有什么发现?能得
3、出等腰三角形的哪些性质?教学活动材料3:如图25,在等腰三角形ABC中,ABAC,AD平分BAC,交BC于D,(1)根据学过的全等三角形判定方法找出图中的全等三角形,根据全等三角形的性质找出所有相等的线段和角(2)你发现了等腰三角形的哪些性质?(发给学生活动材料,四人一组先合作学习,再交流讨论,经历等腰三角形性质的发现过程,教师应给学生一定的时间和机会,来清晰地、充分地讲出自己的发现,并加以引导,用规范的数学语言进行归纳,最后得出等腰三角形的性质.)结论: 等腰三角形的两个底角相等。或“在一个三角形中,等边对等角” 等腰三角形的顶角平分线、底边上的中线和高线互相重合.简称等腰三角形三线合一.2
4、多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质.3解决节前图中的悬念,如果重锤经过三角尺斜边的中点,那么可以判定梁是水平的.你能说明理由吗?4应用定理时的推理格式:用几何语言表述为:在ABC中,如图,ABAC BC(在一个三角形中等边对等角)在ABC中,如图(1)ABAC ,12ADBC,BDDC (等腰三角形三线合一)(2)ABAC,BDDC ADBC,12(3)ABAC,ADBC BDDC,12例1 如图2-6,在ABC中,ABAC, A50°,求B,C的度数. (板书解答过程)例2 (P36课内练习2) 已知线段a,h(如图2-7)用直尺和圆规作等腰三角形ABC,使底边BCa,BC边上的高线为h.教学中可作如下启发:(1)假设图形已经作出,如课本图28,BC长已知,可以先作出BC边,要作等腰三角形ABC,关键是要作出哪一个点?(2)已知BC边上的高线的长度为h,你能作出BC边上的高线吗?等腰三角形底边上的高线与中线有什么关系?由此能确定顶点A的位置吗?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年自贡客运资格证试题完整版
- 吉首大学《期货与期权》2021-2022学年第一学期期末试卷
- 吉首大学《非参数统计》2021-2022学年第一学期期末试卷
- 吉林艺术学院《造型基础训练III》2021-2022学年第一学期期末试卷
- 吉林艺术学院《数字化建筑环境设计软件基础SketchUP》2021-2022学年第一学期期末试卷
- 期刊经营转让协议书范文模板
- 吉林师范大学《中国画技法研究》2021-2022学年第一学期期末试卷
- 吉林师范大学《虚拟现实设计与制作》2021-2022学年第一学期期末试卷
- 2024年大棚蔬菜分包协议书模板
- 2024年大葱采购协议书模板
- 2024年国家公务员考试《行测》真题卷(副省级)答案及解析
- 教育局职业院校教师培训实施方案
- 2024年新华社招聘应届毕业生及留学回国人员129人历年高频难、易错点500题模拟试题附带答案详解
- 江苏省南京市秦淮区2023-2024学年八年级上学期期中语文试题及答案
- 2024年个人车位租赁合同参考范文(三篇)
- (完整版)新概念英语第一册单词表(打印版)
- 签申工作准假证明中英文模板
- 员工履历表(标准样本)
- 2024年山东省济南市中考数学真题(含答案)
- 山东省青岛市黄岛区2023-2024学年六年级上学期期中语文试卷
- 二手门市销售合同范本
评论
0/150
提交评论