版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学习必备欢迎下载初中数学函数知识点整理1. 定义:一般地, 如果cbacbxaxy,(2是常数,)0a,那么y叫做x的二次函数 . 2. 二次函数2axy的性质(1)抛物线2axy的顶点是坐标原点,对称轴是y轴. (2)函数2axy的图像与a的符号关系 . 当0a时抛物线开口向上顶点为其最低点;当0a时抛物线开口向下顶点为其最高点. (3)顶点是坐标原点,对称轴是y轴的抛物线的解析式形式为2axy)(0a. 3. 二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线 .4. 二 次 函 数cbxaxy2用 配 方 法 可 化 成 :khxay2的 形 式 , 其 中abackab
2、h4422,. 5. 二 次 函 数 由 特 殊 到 一 般 , 可 分 为 以 下 几 种 形 式 : 2axy; kaxy2; 2hxay;khxay2;cbxaxy2. 6. 抛物线的三要素:开口方向、对称轴、顶点. a的符号决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同. 平行于y轴(或重合)的直线记作hx. 特别地,y轴记作直线0 x. 7. 顶点决定抛物线的位置. 几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. 8. 求抛物线的顶点、对称轴的方法 (1)公式法:abacabxa
3、cbxaxy442222,顶点是),(abacab4422,对称轴是直线abx2. (2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 1 页,共 12 页 - - - - - - - - -学习必备欢迎下载为(h,k),对称轴是直线hx. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. 9. 抛物线cbxaxy2中,c
4、ba,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样 . (2)b和a共同决定抛物线对称轴的位置. 由于抛物线cbxaxy2的对称轴是直线abx2,故:0b时,对称轴为y轴;0ab(即a、b同号)时,对称轴在y轴左侧;0ab(即a、b异号)时,对称轴在y轴右侧 . (3)c的大小决定抛物线cbxaxy2与y轴交点的位置. 当0 x时,cy,抛物线cbxaxy2与y轴有且只有一个交点(0,c) :0c, 抛物线经过原点; 0c, 与y轴交于正半轴; 0c, 与y轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立. 如抛物线的对称轴在y轴右侧,则0ab. 10. 几种特殊的二
5、次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0 x(y轴)(0,0 )kaxy20 x(y轴)(0, k) 2hxayhx(h,0) khxay2hx(h,k) cbxaxy2abx2(abacab4422,) 11. 用待定系数法求二次函数的解析式(1)一般式:cbxaxy2. 已知图像上三点或三对x、y的值,通常选择一般式. (2)顶点式:khxay2. 已知图像的顶点或对称轴,通常选择顶点式. 精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 2 页,共 12 页 - - - - - - - -
6、-学习必备欢迎下载(3)交点式: 已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay. 12. 直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为 (0, c). ( 2 ) 与y轴 平 行 的 直 线hx与 抛 物 线cbxaxy2有 且 只 有 一 个 交 点(h,cbhah2). (3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根. 抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:有两个交点0抛物线与x轴相交;有一个交点(顶点在x轴上)0抛物线与x轴相切;没有交点0
7、抛物线与x轴相离 . ( 4)平行于x轴的直线与抛物线的交点同( 3)一样可能有0 个交点、 1 个交点、 2 个交点 . 当有 2 个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根 . ( 5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像g的交点,由方程组cbxaxynkxy2的解的数目来确定:方程组有两组不同的解时l与g有两个交点 ; 方程组只有一组解时l与g只有一个交点;方程组无解时l与g没有交点 . ( 6) 抛 物 线 与x轴 两 交 点 之 间 的 距 离 : 若 抛 物 线cbxaxy2与x轴 两 交 点 为0021,xbxa,由
8、于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxab444222122122121精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 3 页,共 12 页 - - - - - - - - -学习必备欢迎下载一次函数与反比例函数考点一、平面直角坐标系( 3 分)1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向; 两轴的交点o (即公共的原点)叫做直角坐标系的原点;建立了直角坐
9、标系的平面,叫做坐标平面。为了便于描述坐标平面内点的位置,把坐标平面被x 轴和 y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意: x 轴和 y 轴上的点,不属于任何象限。2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当ba时, (a,b)和( b,a)是两个不同点的坐标。考点二、不同位置的点的坐标的特征(3 分)1、各象限内点的坐标的特征点 p(x,y) 在第一象限0,0 yx点 p(x,y) 在第二象限0,0 yx点 p(x,y) 在第三象限0,0 yx点 p
10、(x,y) 在第四象限0,0 yx2、坐标轴上的点的特征点 p(x,y) 在 x 轴上0y,x 为任意实数点 p(x,y) 在 y 轴上0 x,y 为任意实数点 p(x,y) 既在 x 轴上,又在y 轴上x,y 同时为零,即点p 坐标为( 0,0)3、两条坐标轴夹角平分线上点的坐标的特征点 p(x,y) 在第一、三象限夹角平分线上x 与 y 相等点 p(x,y) 在第二、四象限夹角平分线上x 与 y 互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。位于平行于y 轴的直线上的各点的横坐标相同。5、关于 x 轴、 y 轴或远点对称的点的坐标的特征点 p
11、与点 p 关于 x 轴对称横坐标相等,纵坐标互为相反数精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 4 页,共 12 页 - - - - - - - - -学习必备欢迎下载点 p 与点 p 关于 y 轴对称纵坐标相等,横坐标互为相反数点 p 与点 p 关于原点对称横、纵坐标均互为相反数6、点到坐标轴及原点的距离点 p(x,y) 到坐标轴及原点的距离:(1)点 p(x,y) 到 x 轴的距离等于y(2)点 p(x,y)到 y 轴的距离等于x(3)点 p(x,y)到原点的距离等于22yx考点三、函数及其相关概念(38 分)1、变量与常量在某一变化过程中
12、,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。一般地,在某一变化过程中有两个变量x 与 y,如果对于x 的每一个值, y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是 x 的函数。2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。使函数有意义的自变量的取值的全体,叫做自变量的取值范围。3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图像法用图像表示函数关系的方法
13、叫做图像法。4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。考点四、正比例函数和一次函数(310 分)1、正比例函数和一次函数的概念一般地,如果bkxy(k, b 是常数, k0) ,那么 y 叫做 x 的一次函数。特别地,当一次函数bkxy中的 b 为 0 时,kxy(k 为常数, k0) 。这时, y 叫做x 的正比例函数。2、一次函数的图像所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数bkxy的图像
14、是经过点(0,b)的直线;正比例函数kxy的图像是经过原点(0,0)的直线。k 的符号b 的符号函数图像图像特征k0 b0 y 图像经过一、二、三象限,y 随 x 的精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 5 页,共 12 页 - - - - - - - - -学习必备欢迎下载0 x 增大而增大。b0 y 0 x 图像经过一、三、四象限,y 随 x 的增大而增大。k0 y 0 x 图像经过一、二、四象限,y 随 x 的增大而减小b0 时,图像经过第一、三象限,y 随 x 的增大而增大;(2)当 k0 时, y 随 x 的增大而增大(2)当 k
15、0 k0 时,函数图像的两个分支分别在第一、三象限。在每个象限内,y 随 x 的增大而减小。x 的取值范围是x0,y 的取值范围是y0;当 k0 a0 y 0 x y 0 x 性质(1)抛物线开口向上,并向上无限延伸;( 2)对称轴是x=ab2,顶点坐标是(ab2,abac442) ;(3)在对称轴的左侧,即当xab2时, y 随 x 的增大而增大,简记左减右增;(4)抛物线有最低点,当 x=ab2时,y 有最小值,abacy442最小值(1)抛物线开口向下,并向下无限延伸;(2)对称轴是x=ab2,顶点坐标是(ab2,abac442) ;(3)在对称轴的左侧,即当xab2时,y 随 x 的增
16、大而减小,简记左增右减;(4)抛物线有最高点,当x=ab2时, y 有最大精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 9 页,共 12 页 - - - - - - - - -学习必备欢迎下载值,abacy442最大值2、二次函数)0,(2acbacbxaxy是常数,中,cb、a的含义:a表示开口方向:a0 时,抛物线开口向上, ,a0 时,图像与x 轴有两个交点;当=0 时,图像与x 轴有一个交点;当0 时,图像与x 轴没有交点。补充:1、两点间距离公式(当遇到没有思路的题时,可用此方法拓展思路,以寻求解题方法)y 如图:点a 坐标为( x1,y
17、1)点 b 坐标为( x2,y2)则 ab 间的距离,即线段ab 的长度为221221yyxxa 0 x b 2、函数平移规律(中考试题中,只占3 分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)3、直线斜率:1212tanxxyykb为直线在 y轴上的截距扩展1.一般一般 直线方程ax+by+c=0 2.两点由直线上两点确定的直线的两点式方程,简称两点式: )(112121xxxxyyyy3.点斜知道一点与斜率)(11xxkyy精品学习资料 可选择p d f - - - - - - - - - - - - - - 第 10 页,共 12 页 - - - - - - -
18、 - -学习必备欢迎下载4.斜截斜截式方程,简称斜截式: ykxb(k 0) 5 .截距由直线在x轴和y轴上的截距确定的直线的截距式方程,简称截距式:1byax记牢可大幅提高运算速度6.设两条直线分别为,1l:11yk xb2l:22yk xb若12/ll,则有1212/llkk且12bb。若12121llkk7.点p(x0,y0)到直线 y=kx+b( 即: kx-y+b=0) 的距离 : 1) 1(2002200kbykxkbykxd对于点 p(x0,y0)到直线滴一般式方程ax+by+c=0 滴距离有2200abacbyxd常用记牢中考点击考点分析:内容要求1、函数的概念和平面直角坐标系中某些点的坐标特点2、自变量与函数之间的变化关系及图像的识别,理解图像与变量的关系3、一次函数的概念和图像4、一次函数的增减性、象限分布情况,会作图5、反比例函数的概念、图像特征,以及在实际生活中的应用6、二次函数的概念和性质,在实际情景中理解二次函数的意义,会利用二次函数刻画实际问题中变量之间的关系并能解决实际生活
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB11∕T 656-2019 建设用地土壤污染状况调查与风险评估技术导则
- 辽宁省丹东市东港市2023-2024学年八年级上学期期中考试数学试卷(含答案)
- “城市天气预报员”实践活动 课件 2024-2025学年电子工业出版社(2022)初中信息技术第三册
- 5年中考3年模拟试卷初中道德与法治八年级下册01专项素养综合全练(一)
- 淘宝的swot分析课程
- 五下语文八单元作文教学课件教学
- 西师版四年级音乐上音乐教案
- DB11-T 2057-2022 二氧化碳排放核算和报告要求 民用航空运输业
- 咨询公司办公大楼改造合同
- 公路智能监控居间合同
- 混凝土地面施工
- 跨文化交际能力调查问卷(一)
- 钢结构分部分项划分表
- 关于我省危险废物经营许可证领证单位的公告
- SPC统计过程控制作业执行规范标准
- 教育部人文社科项目申请书样表
- 部编版三年级上册语文 统编版三上第三单元复习课件(24页)
- 形象易懂讲算法——压缩感知by咚懂咚懂咚
- 土方倒运施工方案
- 前置性学习学案的策略探究
- 口腔颌面部肿瘤
评论
0/150
提交评论