老树发新芽 EL34和KT88推挽胆机(二)_第1页
老树发新芽 EL34和KT88推挽胆机(二)_第2页
老树发新芽 EL34和KT88推挽胆机(二)_第3页
老树发新芽 EL34和KT88推挽胆机(二)_第4页
老树发新芽 EL34和KT88推挽胆机(二)_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、老树发新芽 EL34和KT88推挽胆机(二)(五)第一次改进机器装好以后发现了两个问题:(1)4个S+M电解电容安装位置离功率输出管比较近,冬天工作3个小时、夏天工作1个小时以后,电容的外壳就被功率管烤得滚烫,估计有60左右,必须要用电风扇近距离对着吹帮助散热。虽然电容的允许工作温度是105,但在这么高的环境温度下长期工作必然减少电容使用寿命,轻则过早失效,重则爆浆短路。再者,电扇的噪声影响了听音乐时背景的宁静,使装机时降低本底噪声的努力付之东流。因此这个位置不能安装电解电容,必须换位置或改为耐高温的聚丙烯薄膜电容。(2)不能在工作时直观地监视功率输出管的直流电流。推挽管工作时直流电流的对称性

2、很重要。如少许不对称,就会增大失真;如严重不对称,甚至单边缺失,就会使流过输出变压器直流电流急剧增大,使变压器磁饱和,甚至烧毁输出变压器,因为推挽输出变压器是按照流过的直流电流为零(2个推挽管直流电流对称而互相抵消)设计的。虽然本机通过调节负偏压电位器可以精确调整推挽管直流电流对称性,但是实际使用却经常发现:在负栅压不变情况下,推挽管一边是64mA(0.014V),一边是41mA(0.009V),相差三分之一。调整负偏压使两边一致后半小时1小时再复核,原来小的那边又远超过64mA,只好再调回来。如此就形成一个定律:每次开机后就要翻起重达40kg的沉重机身,测量推挽管的电流,如不一致就要调整,然

3、后开着机翻回来使用半小时后又要翻起复核调整,再开着机翻回来继续使用。每次开机都要如此翻起翻回,不胜其烦,简直不是在享受音乐的乐趣,是在折腾找累。为什么这些从废钢场捡来大盾EL34工作不太稳定?我估计是由于年代久远、阴极上附着了惰性物质的缘故。扔掉这8个大盾EL34不用是不可能的,毕竟名管的声音很好。如果仅仅是这样折腾还没啥大不了的,发烧的精髓不就是不停折腾,在折腾中找到乐趣吗?这样折腾了半年,直到一次开机后测量发现一只管子竟然没有阴极电流,才引起我的高度警惕:这样要烧掉输出变压器的!但奇怪的是这只管子并没有坏,用GS-5A测量工作正常,阳极电流70mA。而上机使用时又一次发现其工作电流为零,关

4、机后再次开机,马上测电流是64mA又好了。这样长期用下去是不行的,总有一天要烧掉珍贵的输出变压器。这对输出变压器是深圳大极典公司CEO曾德钧先生1993年在深圳维克斯电子公司工作时专门为我定制的,频响特性很完美。下图是1993年大奖赛投稿时做的输出变压器频响测试:为了保护输出变压器,我想到要设置工作时能直观地监视功率输出管的直流电流表,以便及时发现推挽管电流的异常和不对称情况,一旦出现就及时关机换管或调整外置的负偏压电位器,不用再把机器翻上翻下地测量了。4个S+M电解电容安装位置正好可以安装电流表,而4个S+M电解电容拆下不用,改在机内空间安装聚丙烯电容。聚丙烯电容选用美国EC的5MP电容,每

5、声道2个30uf并联。厂家给出的此电容性能指标是:类型:metallized Polypropylene(金属化聚丙烯) 应用:工业和军用级开关电源 性能:相对电解电容,较好的电气性能,没有 “Roll-off”电容漂移ESR:4 毫欧,纹波电流:30amps; 谐振频率: 1065KHz,额定电压:240VAC(其峰值相当于240×1.414=340VDC)过压 能力:200;完美的稳定性,低电介质吸收 尽管电容额定电压240VAC只相当于340VDC,但是实际作耐压试验时,电压加到600VDC,泄漏电

6、流只有1A,充好600VDC后撤去电源放置10天,测量电容两端电压还有560 VDC。这表明美国EC的5MP电容耐压特性非常好,自放电泄漏非常小。每声道60uf聚丙烯电容的滤波效果与330uf电解电容相比没有差别,整机本底噪声没有丝毫变化。电流表选用内阻1.1欧姆的台湾产品。查G.E.C. KT88使用手册P22电路图得知G.E.C.测量固定偏压推挽KT88阴极电流的方法是:KT88阴极通过10欧电阻接地,测量此电阻两端电压即反映阴极电流。现在通过内阻1.1欧姆电流表接地直接测量更没问题。加装电流表要将原来安装电容开的直径为25mm的孔扩大为35mm的孔。在已经开好的孔上再扩孔是不能用35mm

7、的开孔器的,因为无法用钻头定位,开孔器要向周边飞开去。最后只好用半圆钢锉在不锈钢底板上挫了2天。下图是改好后的内部接线:31为了保证负栅压电路的长期稳定工作,又在2只2200df/200V电解电容器与功率输出管之间加装了2mm厚的铝隔热板,隔热效果很好,冬天室内环境温度15时连续工作15小时,摸铝隔热板很烫手,电容器外壳只有温热,不会超过25。(六)第二次修改前面讲到,发现ECC88(6N11)工作于阴极偏置电压-3.5V时出现输入大信号失真现象后,为了不改动稳压电路和阴极偏置电阻而改用12AU7(ECC82)。这样就闲置了十几只6N11和ECC88、ECC189(特性与ECC88相同)。见下

8、图6N11和ECC88与12AU7(ECC82)音色是有很大差别的。为了能换管欣赏两种(实际不止两种,还有ECC81也就是12AT7)的不同音色,我萌生了第三次修改电路想法。改动之处如下: 加装一个4刀3位的转换开关,对前级管子灯丝供电电压进行切换:切到6.3V一侧时,换上ECC88(6N11);切到12.6V一侧时,换上12AU7(ECC82);置于中间位置时,6.3V和12.6V两边都不接通。切换时保持原来2组6.3V分开模式。此接线图正确无误,通电调试一次成功。开关接线图如下: 修改倒相级电子管的灯丝电压。由于每只ECC88(6N11)灯丝电流有0.35A,4只增加1.4A,将进一步降低

9、本来就负担很重6.3V灯丝供电电压。灯丝电压过低,不仅影响放大管的工作状态,而且长期以往将会导致阴极中毒,所以把倒相级的6SN7GT改为12.6V灯丝供电的12SN7GT,可以腾出1.2A电流给ECC88(6N11)用。 修改前级的阴极偏置电阻,要找到一个阻值对ECC88(6N11)和12AU7(ECC82)都适用的电阻。经过多次在电子管栅压-屏流特性曲线上作图,终于找到了这样阻值的电阻:325欧姆。 ECC88(6N11)的工作点是: Va=100V, Vg=-2.4V-2.6V, Ia=7.68mA; 见下图ECC88:前级换用6N11(ECC88)时,并联在阴极电阻上的旁路电容的容量需重

10、新计算选择:电子管手册没有给出6N11(ECC88)屏极电阻,根据公式:ra=u/s =33mA/(12.5 mA/V) =2.64K,阴极等效电阻:rk=(ra+RL)/(u+1) =(325+2640)/(33+1) =87欧,从阴极电容看进去的等效电阻:rk=rkRk =(87×325)/(87+325) =69欧,取低频下限截止频率f-3db=1HZ,于是,与RK并联的交流旁路电容的容量为:Ck=1/2f-3dbrk =1/2×3.14×1×69 =2307uf。12AU7(ECC82)的工作点是:Va=120V,Vg=-2.5V-2.6V,Ia

11、=7.58mA。换12AU7(ECC82)时,12AU7可以在100V屏压下很好工作,由下面的特性曲线图可以看出:当阴极电阻改为325欧姆时,Ia=6.5mA,Vg=-2.1V,工作点位于栅屏曲线中间偏上,OK!也可以拔掉0A2(WY1)稳压管,但保留稳压限流电阻的降压作用,使屏流控制在7.58mA,Va=120125V,工作点位于栅屏曲线中间位置,更好一些。见下面特性曲线图: 修改稳压电路。阴极偏置电阻改为325欧姆后,前级每个管子的工作电流增加一倍,原来20K的稳压限流电阻必须减小。是不是也减小一倍呢?需验算后再决定。稳压时电流较大的是ECC88(6N11)。当Ia=8mA时,在电压最低为

12、430V时必须保证限流电阻流过电流:Iz=2×8mA+5 mA =21mA,其中5mA是稳压管最小稳定电流。限流电阻=(430V-206V)/21=9.9K.。计算表明确实要减小一倍。在原来外置安装的16K和13K电阻上并联26.6K(12K+15K)和43K电阻的方法将电阻减小为9.9K左右。下图是12.6V和6.3V转换开关的接线:前级换6N11:前级换12AU7:调试数据:(1) 前级稳压:L(飞利浦0A2)205.5V206V,R(CBS 0A2)206.9V207.2V(2) 稳压限流电阻Rw上压降:1、 用6N11时稳压:L232V23.2mA, 每管电流(23.2mA-

13、5 mA)/2=9.1mA R234V23.4mA, 每管电流(23.4mA-5 mA)/2=9.2mA2、 用12AU7时稳压:L231V23.2mA, 每管电流(23.1mA-5 mA)/2=9.05mA R233V23.4mA, 每管电流(23.3mA-5 mA)/2=9.15mA3、 用12AU7时不稳压:L182V18.2mA每管电流9.1mA, R184V18.4mA每管电流9.2mA(3)灯丝电压:AC225V时,6.23V,12.60V;AC222V时,6.21V,12.55V管子和位置Vg(V)Va(V)Ia(mA)测值或序号北京6N11 R-1-2.78-2.78102.9

14、98.68.58.517.2/11.6,16/11R-2-2.9-2.9101.799.88.98.916.4/11.3,16.4/11.3L-2-2.96-2.96102.7100.89.19.116.4/11.5,16.8/10.8L-1-2.82-2.82107.595.58.78.716.2/10.8,16/10.8北京6N11 R-1-2.5-2.5991057.77.714/10.2,15.3/10.2R-2-2.88-2.88100.4103.38.88.816.2/10.8,16.8/10.8L-2-2.81-2.8199.6102.18.68.616.4/11.6,17/10

15、.6L-1-2.6-2.6108957.87.816/10.2,14/9.8西门子ECC88 L1-2.42-2.42102.1101.17.457.4514/11.6,14/11.3大盾ECC189 L2-2.482.48104.999.97.87.814.4/11.4,13.2/11大盾ECC189 R2-2.63-2.63-107.795.28.18.114/12.2,15.2/12.4马自达ECC189 R1 -2.4-2.4103.5101.47.47.414/11.9,14/12.0东芝PCC88-2.48-2.4899.6104.57.67.614/10.6,15/11.0USA

16、 6DJ8-2.18-2.18103.7101.16.76.7RCA 12AU7 R-1 -2.63-2.63123.5131.68.18.19.9/2.02,9.85/2.0R-2-2.63-2.63123.5131.68.18.19.9/2.0,10/2.0L-2-2.64-2.64128.8125.88.128.1210.2/2.05,10.2/2.02L-1-2.57-2.571241287.97.99.9/2.08,10/2.0812AU7 R-1 稳压-2.04-2.04102.6102.66.286.289.9/2.02,9.85/2.0R-2-2.06-2.06106.898.

17、86.346.349.9/2.0,10/2.0L-2-2.08-2.08103.4100.56.406.4010.2/2.05,10.2/2.02L-1-2.00-2.00106.198.06.156.159.9/2.08,10/2.08GE 12SN7GT-6.9-7.31821844.294.248.8/2.4,8.8/2.4GE Vk108V-6.8-7.21871884.354.328.4/2.37,8.4/2.44GE-6.8-7.11811824.34.258.7/2.5,8.7/2.52GE Vk108V-6.8-7.11841874.394.328.6/2.5,8.6/2.5G

18、E -6.8-7.1179.3177.44.254.38.8/2.54,8.7/2.57GE Vk108V-6.7-7.0180185.54.454.278.5/2.52,8.7/2.58喷碳RCA-6.8-7.01821744.144.49.2/2.54,8.6/2.58喷碳Vk108V-6.4-6.61841804.34.48.4/2.24,8.2/2.2GE -6.7-7.01881854.244.338.4/2.32,8.8/2.34GE×Vk108V-6.8-7.11771854.364.128.4/2.34,8.25/2.28(七)第三次修改第二次修改将前两级SRPP电路

19、下臂电子管的阴极电阻旁路电容从470uf增加到2100uf以后,听了几个月,总觉得对高低频响应都有些影响。高频有些朦胧,不够通透;低频有些肥厚,力度不够。使用大容量旁路电容原本是为了避免阴极偏置电阻对电路低频增益的影响,但是这么大容量的电容有较大的自身电感,必然对高频响应有不良影响。除了因为大容量电容的自身电感造成的高频反馈会影响高频响应以外,大容量电容还会影响电路的瞬态响应,这也就是感到低频有些肥厚,力度不够的原因。虽然SRPP的应用位置处于放大器的前级,属于小信号电路,但从对信号瞬态响应的延迟来说,前级比后级更为重要。基于上述想法,我就打算将前级ECC88/12AU7的阴极偏置模式改为Mo

20、rgan Jones在电子管放大器一书中一直很推崇的普通廉价红色发光二极管偏置。其优点就是交流电阻小(4.3),可以省去阴极电容。与此同时还打算将SRPP电路改为跟随器。跟随器是从u跟随器发展而来的。Morgan Jones在电子管放大器中对SRPP电路和u跟随器进行对比分析时认为“SRPP电路中上臂管子的阴极电阻Rk是下臂管子的负载电阻RL,由于其阻值相当低,这意味着必定有Avu,也意味着与u式跟随器相比,SRPP电路失真将明显增多。”但是Morgan Jones认为u跟随器也有缺点:需要较高的阳极电压,驱动低阻抗负载时失真也会增大至0.85%,因此他推荐采用跟随器。但是,Morgan Jo

21、nes给出的跟随器电路是不能照搬用于ECC88/6N11的。首先,由于下臂电子管阴极偏置电压不能工作于接近截至区的-3.4V,所以必须采用单个5mm高亮度红色发光二极管。此管在20mA工作电流下正向压降2.05V,10 mA工作电流下正向压降1.98V左右,正好可以适应前级ECC88/6N11偏置的需要-2V偏置,90V阳极电压下,阳极电流10mA。其次,原电路上下臂电子管之间的晶体管恒流源两个进出端点间的压降是3.5V左右(晶体管C-E间的压降在2.6V左右),这个电压就是上臂管子的偏置电压,这是针对下臂管子用2个红色发光二极管偏置-3.4V设计的,上下臂管子偏置电压正好平衡,却不适用ECC

22、88/6N11。在工作电压206V情况下,ECC88/6N11工作电流10mA,晶体管恒流源两个进出端点压降将是4V左右。查曲线图,上臂管子工作在-4V偏压下,阳极电压将超过120V,甚至接近极限阳极电压130V,长期使用很不安全,所以必须更改PNP管的基极偏置电阻(100K)。为了得到较大输出电阻,发射极的100取样(检测加反馈)电阻不变。由于-2V偏置电压使ECC88/6N11的阳极电流增加至10mA,所以需要修改稳压限流电阻至:Rw=(Vh-Vw)/(Ia+Iz)式中:Vh:前级高压430V,Vw:稳压值206V,Ia:两管阳极电流2×10mA,Iz:稳压管稳定工作电流5 mA

23、,代入上式:Rw=(430V-206V)/(20 mA+5 mA)=9K,在原来的9.9K电阻上并联89K电阻即可实现。恒流源的晶体管采用硅PNP管2SA836,实测hfe约250左右。根据Morgan Jones计算,晶体管的交流阻抗可以达到1/hoe=30K,恒流源输出的交流阻抗:r=Re*(2*hfe)+1/ hoe=90K,,再乘上臂管子的u值得出下臂管子阳极负载电阻RL 。用ECC88/6N11时u=33,RL=2.97M。12AU7在阳极电压100V左右时u=20,RL=1.8M。拆去阴极电阻电容,在底板上钻孔安装高亮度红色发光二极管,作好晶体管恒流源并接好线,调试ECC88/6N

24、11。起初基极电阻仍用100K,下臂管子偏置电压约-2V,阳极电压78V,恒流源压降4.2V,上臂管子在此偏置下,阳极电压122125V。减小基极电阻至20K,C-E间压降减为2.2V,上臂偏置电压-3.7V:继续减小至3K,C-E间压降减为1V,上臂管子偏置电压-2V,但却出现了高频自激(尖叫声);只得增加至7.5K,自激消除,上臂管子偏置电压-2.2V-3V。即使用北京6N11还有些不平衡也没辙了,因为再减小就要出现自激。ECC88 输入特性 6N11 输入特性6N11 输出特性ECC88 输出特性ECC189输出特性换用12AU7,稳压206V时,下臂管子偏置电压-1.92v,比用ECC

25、88/6N11略浅一些,上臂管子偏置电压-1.75v左右,之所以比下臂管子还要浅一些,是因为阳极电流只有约7mA,特性图显示此工作点合适,上管工作在线性区。换用12AU7,不稳压时供电电压约260V,下臂管子偏置电压-1.93v,上臂管子偏置电压-2.2v左右,阳极电流增加至约9mA,特性图显示此工作点Q是合适的,工作在线性区,只是不稳压时,由于跟随器上臂管阴极与倒相级直耦,所以12SN7GT的阴极电位被抬高至125V左右,灯丝与阴极间的电压111.4V,超过手册上给出100V耐压值约11V。经过试验,手头已有的10个12SN7GT灯丝与阴极间的绝缘都可以承受111V的电压。12AU7 输入特

26、性 12AU7 输出特性 最后,做出负载线,审视跟随器工作的线性度。由于下管的阳极交流负载是以恒流源作负载的阴极跟随器,所以其负载线是几乎平行于x轴的平坦线,线性无问题。然而如果上管的负载线过于陡峭,仍然会造成明显失真。(1) 做上管负载线前首先要明确:因两声道电源分开,故前级稳压管输出端没有接0.22uf的去耦电容,所以Rw=9K成为上管的阳极负载电阻。(2) ECC88、ECC189、6N11的负载线:Vht=430V-94V=336V,Iao=Vht/Rw=37mA,特别注意:此电流是供给两个跟随器和稳压管的,稳压管Izmin=5mA。按比例画出横轴(Va轴)的延长线,找到Vht=336

27、V那一点,从此点经过工作点画直线与竖轴(Ia轴)交于Ia=16mA。验算:16mA×2+5mA=37 mA,负载线正确无误,且负载线比较平坦,线性度很好,不失真输出振幅约28Vrms。再在ECC88、6N11逆向标出上管的阴极电压坐标,阴极电压与电流在栅极曲线上的交点Q在-2.2V-2.5V左右,表明工作点Q合适。ECC189与ECC88参数一样,但特性图不同,ECC88的线性更好。ECC189阴随的阴极电压电流在栅极曲线上的交点在-2V左右,表明工作点合适。(3) 12AU7不稳压时的负载线:Vht=430V-122V=308V,Iao=Vht/Rw=34mA,特别注意:此电流是供

28、给两个跟随器的,从横轴(Va轴)Vht=308V那一点,经过工作点画直线与竖轴(Ia轴)交于Ia=16.5mA。验算:16.5mA×2=33 mA,负载线基本正确,且负载线还算平坦,线性度较好。不失真输出振幅约11Vrms。同样逆向标出上管的阴极电压坐标,阴极电压与电流在栅极曲线上的交点Q在-2.2V左右,表明工作点Q合适。(4) 12AU7稳压时的负载线:Vht=430V-103V=327V,Iao=Vht/Rw=36mA,特别注意:此电流是供给两个跟随器和稳压管的,从横轴(Va轴)Vht=327V那一点经过工作点画直线与竖轴(Ia轴)交于Ia=10mA。验算:10mA×

29、2+16mA=36mA,稳压管流过16 mA,未超过最大电流30mA,可以工作。调试数据如下:(1) 前级稳压:L(飞利浦0A2)205.5V206V,R(CBS 0A2)206.9V207.2V(2)灯丝电压:AC225V时,6.23V,12.60V;AC222V时,6.21V,12.55V(3)直流工作状态:管子和位置Vg(V)Va(V)Ia(mA)测值或序号北京6N11 R-1-1.97-2.78211011.411.417.2/11.6,16/11R-2-1.98-2.9885.410712.512.516.4/11.3,16.4/11.3L-2-1.98-3.084.610812.4

30、12.416.4/11.5,16.8/10.8L-1-1.97-2.786.810611.411.416.2/10.8,16/10.8北京6N11 R-1-1.95-2.399101.49.99.914/10.2,15.3/10.2R-2-1.98-3.09010812.812.816.2/10.8,16.8/10.8L-2-1.98-3.088.610812.412.416.4/11.6,17/10.6L-1-1.97-2.5886.311110.810.816/10.2,14/9.8西门子ECC88 L1-1.94-2.3390110.69.539.5314/11.6,14/11.3大盾E

31、CC189 L2-1.95-2.589610410.5610.5614.4/11.4,13.2/11大盾ECC189 R2-1.93-2.48-91.411110.1510.1514/12.2,15.2/12.4马自达ECC189 R1 -1.94-2.3491110.59.59.514/11.9,14/12.0东芝PCC88-1.94-2.301001029.49.414/10.6,15/11.0飞利浦ECC88-1.94-1.921001027.67.611.5/10.5,7.8/10.2USA.6DJ8-1.95-1.931001028.28.211.2/10.5,12.0/11.2RC

32、A 12AU7 R-1 -1.93-2.2122125.78.988.989.9/2.02,9.85/2.0R-2(不稳压)-1.93-2.151181298.828.829.9/2.0,10/2.0L-2-1.93-2.18117123.68.828.8210.2/2.05,10.2/2.02L-1-1.93-2.17115.6125.58.898.899.9/2.08,10/2.0812AU7 R-1 稳压-1.94-1.7610599.26.86.89.8/2.08,9.6/2.08R-2-1.94-1.951011038.08.010.5/2.08,10.3/2.1L-2-1.94-1

33、.96102.4100.58.068.0611/1.88,11/1.9L-1-1.94-1.861011027.37.310/2.08,10/2.08GE 12SN7GT-6.9-7.31821844.294.248.8/2.4,8.8/2.4GE Vk108V-6.8-7.21871884.354.328.4/2.37,8.4/2.44GE-6.8-7.11811824.34.258.7/2.5,8.7/2.52GE Vk108V-6.8-7.11841874.394.328.6/2.5,8.6/2.5GE -6.8-7.1179.3177.44.254.38.8/2.54,8.7/2.57

34、GE Vk108V-6.7-7.0180185.54.454.278.5/2.52,8.7/2.58喷碳RCA-6.8-7.01821744.144.49.2/2.54,8.6/2.58喷碳Vk108V-6.4-6.61841804.34.48.4/2.24,8.2/2.2GE -6.7-7.01881854.244.338.4/2.32,8.8/2.34GE×Vk108V-6.8-7.11771854.364.128.4/2.34,8.25/2.28(4)失真测试输入信号幅度:用ECC88/ECC189时,使电平显示管6E1的上下光条刚刚闭合,约0.29Vrms,测量放大器输出到扬

35、声器端子上的波形:音控12点,左声道ECC88/ECC189 音控12点,右声道ECC88/ECC189做前级时无失真 Vp=15.5V 无失真 Vp=16VVrms=11V,P=15W Vrms=11.3V,P=16W音控12点左声道6N11做前级时 音控12点右声道6N11做前级时无失真 Vp=17V 无失真 Vp=17VVrms=12V,P=18W Vrms=12V,P=18W 音控12点左声道ECC88做前级时 音控12点右声道ECC88做前级时无失真 Vp=18V 无失真 Vp=18VVrms=13V,P=21W Vrms=13V,P=21W音控13点左声道12AU7做前级时 音控1

36、3点右声道12AU7做前级时无失真 Vp=16V 无失真 Vp=16VVrms=11.3V,P=16W Vrms=11.3V,P=16W削波失真出现的比较早,大大出乎我的预料,因为这与前面交流工作状态的数据不吻合:削波失真点ECC88/6N11做前级时应在14:30出现,12AU7做前级时应在15:30以后甚至16:00出现,而实际均提前了2点钟位置。音控12点30, ECC88/ECC189.、ECC88、 音控13点30,12AU7做前级出现削波失真6N11做前级时均出现对称的削波失真 需要找出失真出现在哪一级。于是将示波器探头置于×10档,测试倒相驱动级12AT7的阴极电阻两端

37、输出波形或功率管栅极与阴极之间的输入波形:音控12点,ECC88驱动级输出无失真 音控12点30,ECC88驱动级输出削顶失真Vp=1.5格×2V×10=35V,Vrms=24.7V Vp=2格×2V×10=40V ,Vrms=28.3V ECC88/6N11做前级时,驱动级输出Vp=40V时出现削顶失真,是由于阴随的增益A0.9,倒相级输出Vp=40/0.9=44.4V,已经达到其单臂最大不失真输出振幅,这已能适应EL34偏置-32V、KT88偏置-40V的需求。还需要判断前面的跟随器在音控器位于何处时产生失真,工作线性度如何。测试ECC88跟随器输出

38、端波形,15点以前探头置于×1档。音控12点 音控12点30无失真 Vp=5V 无失真 Vp=6VVrms=3.53V Vrms=4.24V音控13点 音控13点30无失真 Vp=7.5V 无失真 Vp=9.8VVrms=5.3V Vrms=6.9V音控14点 音控14点30无失真 Vp=12.5V 无失真 Vp=17VVrms=8.8V Vrms=12V音控15点 音控15点,探头置于×10档无失真 Vp=23V,已超界,不准确 无失真 Vp=25VVrms=16V Vrms=17.6V音控15点30探头置于×10档 音控16点探头置于×10档无失真

39、Vp=35V 无失真 Vp=40V Vrms=24.7V Vrms=28V开始出现削波失真 测试结果表明前级的跟随器输出直至Vrms=28V才开始出现削波失真,且与前面工作点设计时的计算值完全吻合。跟随器的线性远远超出预期。前级改为跟随器是成功的。至此,测试表明前级分别用ECC88、ECC189、6N11(稳压)和12AU7(不稳压),音控器分别调到12:30和13:30时,倒相级出现削波失真是它已经达到最大不失真输出振幅(45V)造成的,完全正常。换用电流较小的EF89,使倒相级总屏流减小至约7.6mA,偏置电压加深至-8V左右,阳极电压提高到200V左右,后来又更换倒相管,失真没有变化。(6)方波频率响应测试由于低频和中频方波响应几乎没有变化,和前面的测试结果几乎完全一样,所以重点测试了高频响应。音控置于12点位置。左声道10KHZ 左声道20KHZ右声道10KHZ 右声道20KHZ 最终的电路图是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论