电力电子课程设计--直流降压斩波电路_第1页
电力电子课程设计--直流降压斩波电路_第2页
电力电子课程设计--直流降压斩波电路_第3页
电力电子课程设计--直流降压斩波电路_第4页
电力电子课程设计--直流降压斩波电路_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等级:湖南工程学院课 程 设 计课程名称 电力电子技术 课题名称 直流降压斩波电路 专 业 自 动 化 班 级 1201 学 号 201201020117 姓 名 李慧红 指导教师 唐勇奇 2015年1月3 日 湖南工程学院课程设计任务书 课程名称: 电力电子技术 题 目:直流降压斩波电路 专业班级: 自动化1201 学生姓名: 李慧红 学号: 201201020117 指导老师: 唐 勇 奇 审 批: 汪超 任务书下达日期 2014 年 12 月 24 日设计完成日期 2015 年 1 月 3 日 设计内容与设计要求一 设计内容:1 电路功能:1) 电网工频交流先整流为固定直流,在通过直流斩

2、波电路,得到所需的直流;2) 电路由主电路与控制电路组成,主电路主要环节:整流电路、斩波电路。控制电路主要环节:脉冲发生电路、驱动电路。3) 功率变换电路中的开关器件采用IGBT或MOSFET。4) 系统具有完善的保护2. 系统总体方案确定3. 主电路设计与分析1)确定主电路方案2)主电路元器件的计算及选型3)主电路保护环节设计4. 控制电路设计与分析1) 检测电路设计2) 功能单元电路设计3) 触发电路设计4) 控制电路参数确定二 设计要求:1 设计思路清晰,给出整体设计框图;2 单元电路设计,给出具体设计思路和电路;3 分析所有单元电路与总电路的工作原理,并给出必要的波形分析。4 绘制总电

3、路图5 写出设计报告; 主要设计条件1 设计依据主要参数1) 输入电压:三相(AC)380(1+15%)2) 第一组(降压组)输出电压0300V(DC) 第二组(升压组)输出电压0800V(DC)3) 输出电流:30A4)功率因数:0.8 2. 可提供实验与仿真条件 说明书格式1 课程设计封面;2 任务书;3 说明书目录;4 设计总体思路,基本原理和框图(总电路图);5 单元电路设计(各单元电路图);6 电路改进、实验及仿真等。7 总结与体会;8 附录(完整的总电路图);9 参考文献;10、课程设计成绩评分表 进 度 安 排 第一周星期一:课题内容介绍和查找资料; 星期二:总体电路方案确定 星

4、期三:主电路设计星期四:控制电路设计 星期五:控制电路设计;第二周星期一: 控制电路设计星期二:电路原理及波形分析、实验调试及仿真等星期四五:写设计报告,打印相关图纸; 星期五下午:答辩及资料整理 参 考 文 献1王兆安,电力电子技术(第4版)机械工业出版社,2008.2刘星平电力电子技术及电力拖动自动控制系统校内,2009.3. 浣喜明,姚为正电力电子技术高等教育出版社,2008.4刘祖润,胡俊达毕业设计指导机械工业出版社,1995.5. 林飞,杜欣电力电子应用技术的MATLAB仿真 中国电力出版社,2009.6钟炎平 电力电子电路设计 华中科技大学出版社,2010.7徐德鸿现代电力电子器件

5、原理与应用技术 机械工业出版社,2011.目录第1章 总体方案7第2章 主电路设计82.1 工作原理82.2 参数分析92.3 元件型号选择10第3章 控制电路设计103.1 控制电路方案选择103.2 工作原理12第4章 驱动电路设计134.1 驱动电路方案选择134.2 工作原理14第5章 保护电路设计155.1 过压保护电路155.2 过流保护电路17第6章 系统仿真186. 1 电路总图186.2 MATLAB的仿真结果196.3 仿真结果分析20第7章 课程设计总结20第8章 参考文献21第1章 总体方案电力电子器件在实际应用中,一般是由控制电路,驱动电路,保护电路和以电力电子器件为

6、核心的主电路组成一个系统。由信息电子电路组成的控制电路按照系统的工作要求形成控制信号,通过驱动电路去控制主电路中电力电子器件的导通或者关断来完成整个系统的功能,当控制电路所产生的控制信号能够足以驱动电力电子开关时就无需驱动电路。根据降压斩波电路设计任务要求设计主电路、控制电路、驱动及保护电路,设计出降压斩波电路的结构框图如图1所示。 图1降压斩波电路结构框图在图1结构框图中,控制电路是用来产生降压斩波电路的控制信号,控制电路产生的控制信号传到驱动电路,驱动电路把控制信号转换为加在开关控制端,可以使其开通或关断的信号。通过控制开关的开通和关断来控制降压斩波电路的主电路工作。控制电路中的保护电路是

7、用来保护电路的,防止电路产生过电流现象损害电路设备。 第2章 主电路设计2.1 工作原理 根据所学的知识,直流降压斩波主电路如图2所示: 图2 主电路图直流降压斩波主电路使用一个全控器件IGBT控制导通。用控制电路和驱动电路来控制IGBT的通断,当t=0时,驱动IGBT导通,电源E向负载供电,负载电压=E,负载电流按指数曲线上升。电路工作时波形图如图3所示: 图3 降压电路波形图 当时刻,控制IGBT关断,负载电流经二极管续流,负载电压近似为零,负载电流指数曲线下降。为了使负载电流连续且脉动小,故串联L值较大的电感。至一个周期T结束,再驱动IGBT导通,重复上一周期的过程。当电力工作于稳态时负

8、载电流在一个周期的初值和终值相等,负载电压的平均值为 为IGBT处于通态的时间;为处于断态的时间;T为开关周期;为导通占空比。通过调节占空比使输出到负载的电压平均值最大为E,若减小占空比,则随之减小。由此可知,输出到负载的电压平均值Uo 最大为U i,若减小占空比,则Uo 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。2.2 参数分析主电路中需要确定参数的元器件有IGBT、二极管、直流电源、电感、电阻值的确定,其参数确定如下:(1)电源 要求输入电压为100V。(2)电阻 因为当输出电压为50-80V时,假设输出电流为0.1-5A。所以由欧姆定律可得负载电阻值为,所以取电阻20

9、欧姆。(3)IGBT 由图3易知当IGBT截止时,回路通过二极管续流,此时IGBT两端承受最大正压为100V;而当=1时,IGBT有最大电流,其值为5A。故需选择集电极最大连续电流=,反向击穿电压的IGBT,而一般的IGBT都满足要求。(4)二极管 其承受最大反压100V,其承受最大电流趋近于5A,考虑2倍裕量,故需选择,的二极管。(5)电感 由上面所选的电阻20欧姆,根据欧姆定律: 当Uo=80V时,Iomax=4A;当Uo=50V时,Iomin=2.5A;根据电感电流连续时电感量临界值条件:L=Uo*(Ud-Uo)/(2UdIo)为了保证负载最小电流电路能够连续,取Io=2.5A来算,可得

10、L=0.125mH,所以只要所取电感L>0.125mH ,取L=1mH。(6)开关频率 f=40kHz(7)电容 设计要求输出电压纹波小于1%,由纹波电压公式: 可得 LC >= 0.195 uH*F 取C=0.47mF 2.3 元件型号选择考虑其安全裕度则IGBT的额定电压可以为2-3倍峰值电压,所以额定电压可为440-660.额定电流33-44,二极管VD与其类似,VD的最大反向电压为220。选择IGBT的型号为IRG4PC40U其额定电压为600,额定电流为40。选择续流二极管的型号为HFA25TB60,其而定电压为600,额定电流为25。第3章 控制电路设计3.1 控制电路

11、方案选择控制电路需要实现的功能是产生控制信号,用于控制斩波电路中主功率器件的通断,通过对占空比的调节达到控制输出电压大小的目的。斩波电路有三种控制方式:1.保持开关周期T不变,调节开关导通时间,称为脉冲宽度调制或脉冲调宽型;2.保持导通时间不变,改变开关周期T,成为频率调制或调频型;3.导通时间和周期T都可调,是占空比改变,称为混合型。因为斩波电路有这三种控制方式,又因为PWM控制技术应用最为广泛,所以采用PWM控制方式来控制IGBT的通断。PWM控制就是对脉冲宽度进行调制的技术。这种电路把直流电压“斩”成一系列脉冲,改变脉冲的占空比来获得所需的输出电压。改变脉冲的占空比就是对脉冲宽度进行调制

12、,只是因为输入电压和所需要的输出电压都是直流电压,因此脉冲既是等幅的,也是等宽的,仅仅是对脉冲的占空比进行控制。图3.1 SG3525引脚图对于控制电路的设计其实可以有很多种方法,可以通过一些数字运算芯片如单片机、CPLD等等来输出PWM波,也可以通过特定的PWM发生芯片来控制。因为题目要求输出电压连续可调,所以我选用一般的PWM发生芯片来进行连续控制。对于PWM发生芯片,我选用了SG3525芯片,其引脚图如图3.1所示,它是一款专用的PWM控制集成电路芯片,它采用恒频调宽控制方案,内部包括精密基准源、锯齿波振荡器、误差放大器、比较器、分频器和保护电路等。其11和14脚输出两个等幅、等频、相位

13、互补、占空比可调的PWM信号。脚6、脚7 内有一个双门限比较器,内设电容充放电电路,加上外接的电阻电容电路共同构成SG3525 的振荡器。振荡器还设有外同步输入端(脚3)。脚1 及脚2 分别为芯片内部误差放大器的反相输入端、同相输入端。该放大器是一个两级差分放大器。根据系统的动态、静态特性要求,在误差放大器的输出脚9和脚1之间一般要添加适当的反馈补偿网络,另外当10脚的电压为高电平时,11和14脚的电压变为10输出。 3.2 工作原理由于SG3525的振荡频率可表示为 : 4.1式中:, 分别是与脚5、脚6相连的振荡器的电容和电阻;是与脚7相连的放电端电阻值。根据任务要求需要频率为40kHz,

14、所以由上式可取=0.01F, = ,=。可得f=40kHz,满足要求。 图3.2 控制电路SG3525有过流保护的功能,可以通过改变10脚电压的高低来控制脉冲波的输出。因此可以将驱动电路输出的过流保护电流信号经一电阻作用,转换成电压信号来进行过流保护,同理也可以用10端进行过压保护,如图3.2所示10端外接过压过流保护电路。当驱动电路检测到过流时发出电流信号,由于电阻的作用将10脚的电位抬高,从而11、14脚输出低电平,而当其没有过流时,10脚一直处于低电平,从而正常的输出PWM波。SG3525还有稳压作用。1端接芯片内置电源,2端接负载输出电压,通过1端的变位器得到它的一个基准电位,从而当负

15、载电位发生变化时能够通过1、2所接的误差放大器来控制输出脉宽的占空比,若负载电位升高则输出脉宽占空比减小,使得输出电压减小从而稳定了输出电压,反之则然。调节变位器使得1端得到不同的基准电位,控制输出脉宽的占空比,从而可使得输出电压为50-80V范围。第4章 驱动电路设计4.1 驱动电路方案选择IGBT是电力电子器件,控制电路产生的控制信号一般难以以直接驱动IGBT。因此需要信号放大的电路。另外直流斩波电路会产生很大的电磁干扰,会影响控制电路的正常工作,甚至导致电力电子器件的损坏。因而还设计中还学要有带电气隔离的部分。该驱动部分是连接控制部分和主电路的桥梁,驱动电路的稳定与可靠性直接影响着整个系

16、统变流的成败。具体来讲IGBT的驱动要求有一下几点:1)动态驱动能力强,能为IGBT栅极提供具有陡峭前后沿的驱动脉冲。否则IGBT会在开通及关延时,同时要保证当IGBT损坏时驱动电路中的其他元件不会被损坏。2)能向 IGBT提供适当的正向和反向栅压,一般取+15 V左右的正向栅压比较恰当,取-5V反向栅压能让IGBT可靠截止。3)具有栅压限幅电路,保护栅极不被击穿。IGBT栅极极限电压一般为土20 V,驱动信号超出此范围可能破坏栅极。4)当 IGBT处于负载短路或过流状态时,能在IGBT允许时间内通过逐渐降低栅压自动抑制故障电流,实现IGBT的软关断。驱动电路的软关断过程不应随输入信号的消失而

17、受到影响。针对以上几个要求,对驱动电路进行以下设计。针对驱动电路的隔离方式,有以下2种驱动电路,下面对其进行比较选择。方案1:采用光电耦合式驱动电路,该电路双侧都有源。其提供的脉冲宽度不受限制,较易检测IGBT的电压和电流的状态,对外送出过流信号。另外它使用比较方便,稳定性比较好。但是它需要较多的工作电源,其对脉冲信号有1us的时间滞后,不适应于某些要求比较高的场合。方案2:采用变压器耦合驱动器,其输入输出耐压高,电路结构简单,延迟小。但是它不能实现自动过流保护,不能实现任意脉宽输出,而且其对变压器的绕制要求严格。通过以上比较,结合本系统中,对电压要求不高,而且只有一个全控器件需要控制,使用光

18、耦电路,使用方便,所以选择方案1。对于方案1可以用EXB841驱动芯片来实现也可以直接用光耦电路进行主电路与控制电路隔离,再把驱动信号加一级推挽电路进行放大使得驱动信号足以驱动IGBT管。由于我所设计的过流保护电路是利用控制芯片10端来设计的,且直接用光耦电路比较简单,所以我没有用驱动芯片而是直接用光耦电路。4.2 工作原理如图4.2所示,IGBT降压斩波电路的驱动电路提供电气隔离环节。一般电气隔离采用光隔离或磁隔离。光隔离一般采用光耦合器,光耦合器由发光二极管和光敏晶体管组成,封装在一个外壳内。本电路中采用的隔离方法是,先加一级光耦隔离,再加一级推挽电路进行放大。采用的光耦是TLP521-1

19、。为得到最佳的波形,在调试的过程中对光耦两端的电阻要进行合理的搭配。 图4.2 驱动电路原理:控制电路所输出的信号通过TLP521-1光耦合器实现电气隔离,再经过推挽电路进行放大,从而把输出的控制信号放大第5章 保护电路设计5.1 过压保护电路过压保护根据电路中过压产生不同部位,加入不同的保护电路,当达到定电压值时,自动开通保护电路,可分为主电路器件保护和负载保护。5.1.1 主电路器件保护当达到定电压值时,自动开通保护电路,使过压通过保护电路形成通路,消耗过压储存的电磁能量,从而使过压的能量不会加到主开关器件上,保护了电力电子器件。为了达到保护效果,可以使用阻容保护电路来实现。将电容并联在回

20、路中,当电路中出现电压尖峰电压时,电容两端电压不能突变的特性,可以有效地抑制电路中的过压。与电容串联的电阻能消耗掉部分过压能量,同时抑制电路中的电感与电容产生振荡,过电压保护电路如图5.1.1所示。图5.1.1 RC阻容过电压保护电路图5.1.2 负载过压保护如图5.1.1所示 比较器同相端接到负载端,反相端接到一个基准电压上,输出端接控制芯片10端,当负载端电压达到一定的值,比较器输出Uom抬高10端电位,从而使10端上的信号为高电平时,PWM琐存器将立即动作,禁止SG3525的输出,同时,软启动电容将开始放电。如果该高电平持续,软启动电容将充分放电,直到关断信号结束,才重新进入软启动过程,

21、从而实现过压保护。电阻的取值,比较器反相端接5.1V电源经变位器后为可调基准电压,比较器同相端电压应在5V以内,取负载输出电压最大值80V来算R20/R18=80/3左右 ,所以R20=100K,R18=4K,R17=10k,R19=2k。 图 5.1.2 负载过压保护5.2 过流保护电路当电力电子电路运行不正常或者发生故障时,可能会发生过电流。当器件击穿或短路、触发电路或控制电路发生故障、出现过载、直流侧短路、可逆传动系统产生环流或逆变失败,以及交流电源电压过高或过低、缺相等,均可引起过流。由于电力电子器件的电流过载能力相对较差,必须对变换器进行适当的过流保护。过流保护的方法比较多,比较简单

22、的方法是一般采用添加FU熔断器来限制电流的过大,防止IGBT的破坏和对电路中其他元件的保护。如图1 在主电路串接一个快速熔断丝。还有一种方法如图5.2所示,也是利用控制电路芯片的第10端。在主电路的负载端串接一个很小取样电阻,把它接到放大器进行放大,后再利用比较器,运用过压保护原理同样能实现过流保护。电阻的取值,一般取样电阻端所获得的电压为零点几伏,需要通过放大器把电压放大到几伏左右,由放大器运算公式:Uo=(1+R12/R10)*Ui,取放大10倍,即 1+R12/R10=10 , 所以取R12=9K,R10=1K。放大后把它接到比较器中比较使得比较器输出端电位升高,与过压保护一样原理,所以

23、R13=2K,R14=2K,R15=10K,R16=2K。 图5.2 过流保护电路第6章 系统仿真6. 1 电路总图6.2 MATLAB的仿真结果图4.2 =0.2时的仿真结果图4.3 =0.4时的仿真结果图4.4 =0.6时的仿真结果图4.5 =0.8时的仿真结果图4.6 =0.99时的仿真结果6.3 仿真结果分析由公式可得:当时,=44。=0.4时,=88。=0.6时,=132。=0.8时,=176。=0.99时,=217.8。上面的数据与理论值相同,由于使用的是仿真软件所以没有误差。 第7章 课程设计总结经过两周的电力电子课程设计,真的是获益不少。当看到这个任务书的时候感觉真正要学的东西来了,以前所学的理论知识终于可以用上了。于是拿起了课题认真的看了看,结果发现一头雾水,就大概知道一个主电路而已。而至于控制电路和保护电路根本就不知道怎么回事,只知道以前做实验有用过控制电路

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论