




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、题目 第四章三角函数三角函数的图像与性质高考要求 了解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(x+)的简图,理解A、的物理意义 知识点归纳 1 正弦函数、余弦函数、正切函数的图像2三角函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是,的递增区间是,的递减区间是3函数最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心4由ysinx的图象变换出ysin(x)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换利用图象的变换作图象时,提倡先平移后伸缩
2、,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母x而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少途径一:先平移变换再周期变换(伸缩变换)先将ysinx的图象向左(0)或向右(0)平移个单位,再将图象上各点的横坐标变为原来的倍(0),便得ysin(x)的图象途径二:先周期变换(伸缩变换)再平移变换先将ysinx的图象上各点的横坐标变为原来的倍(0),再沿x轴向左(0)或向右(0平移个单位,便得ysin(x)的图象5 由yAsin(x)的图象求其函数式:给出图象确定解析式y=Asin(x+)的题型,有时从寻找“五点”中的第一零点(,0)作为突破口,要从图象的升降情况
3、找准第一个零点的位置6对称轴与对称中心:的对称轴为,对称中心为;的对称轴为,对称中心为;对于和来说,对称中心与零点相联系,对称轴与最值点联系7 求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意A、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间;8 求三角函数的周期的常用方法:经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法9五点法作y=Asin(x+)的简图:五点取法是设x=x+,由x取0、2来求相应的x值及对应的y值,再描点作图题型讲解 例1 把函数y=cos(x+)的图象向左平移4个单位,所得的函数为偶函数,则的最小值是ABC
4、D解:先写出向左平移4个单位后的解析式,再利用偶函数的性质求解向左平移个单位后的解析式为y=cos(x+),则cos(x+)=cos(x+),cosxcos(+)+sinxsin(+)=cosxcos(+)sinxsin(+)sinxsin(+)=0,xR+=k=k0kk=2=答案:B例2 试述如何由y=sin(2x+)的图象得到y=sinx的图象解:y=sin(2x+)另法答案:(1)先将y=sin(2x+)的图象向右平移个单位,得y=sin2x的图象;(2)再将y=sin2x上各点的横坐标扩大为原来的2倍(纵坐标不变),得y=sinx的图象;(3)再将y=sinx图象上各点的纵坐标扩大为原
5、来的3倍(横坐标不变),即可得到y=sinx的图象例3 求函数y=sin4x+2sinxcosxcos4x的最小正周期和最小值;并写出该函数在0,上的单调递增区间解:y=sin4x+2sinxcosxcos4x=(sin2x+cos2x)(sin2xcos2x)+sin2x=sin2xcos2x=2sin(2x)故该函数的最小正周期是;最小值是2;单调递增区间是0,点评:把三角函数式化简为y=Asin(x+)+k(0)是解决周期、最值、单调区间问题的常用方法例4 已知电流I与时间t的关系式为()右图是(0,)在一个周期内的图象,根据图中数据求的解析式;()如果t在任意一段秒的时间内,电流都能取
6、得最大值和最小值,那么的最小正整数值是多少? 解:本小题主要考查三角函数的图象与性质等基础知识,考查运算能力和逻辑推理能力()由图可知 A300设t1,t2, 则周期T2(t2t1)2() 150 又当t时,I0,即sin(150·)0,而, 故所求的解析式为 ()依题意,周期T,即,(>0) 300942,又N*,故最小正整数943 点评:本题解答的开窍点是将图形语言转化为符号语言其中,读图、识图、用图是形数结合的有效途径 例5 (1)y=cosx+cos(x+)的最大值是_;(2)y=2sin(3x)的图象的两条相邻对称轴之间的距离是_解:(1)y=cosx+cosxsin
7、x=cosxsinx=(cosxsinx)=sin(x)所以ymax=(2)T=,相邻对称轴间的距离为答案: 例6 (1)已知f(x)的定义域为0,1),求f(cosx)的定义域;(2)求函数y=lgsin(cosx)的定义域分析:求函数的定义域:(1)要使0cosx1,(2)要使sin(cosx)0,这里的cosx以它的值充当角解:(1)0cosx12kx2k+,且x2k(kZ)所求函数的定义域为xx2k,2k+且x2k,kZ(2)由sin(cosx)02kcosx2k+(kZ)又1cosx1,0cosx1故所求定义域为xx(2k,2k+),kZ点评:求三角函数的定义域,要解三角不等式,常用
8、的方法有二:一是图象,二是三角函数线例7 求函数y=sin6x+cos6x的最小正周期,并求x为何值时,y有最大值分析:将原函数化成y=Asin(x+)+B的形式,即可求解解:y=sin6x+cos6x=(sin2x+cos2x)(sin4xsin2xcos2x+cos4x)=13sin2xcos2x=1sin22x=cos4x+T=当cos4x=1,即x=(kZ)时,ymax=1例8 判断下面函数的奇偶性:f(x)=lg(sinx+)分析:判断奇偶性首先应看定义域是否关于原点对称,然后再看f(x)与f(x)的关系解:定义域为R,又f(x)+f(x)=lg1=0,即f(x)=f(x),f(x)
9、为奇函数评述: 定义域关于原点对称是函数具有奇偶性的必要(但不充分)条件例9 求下列函数的单调区间:(1)y=sin();(2)y=sin(x+)分析:(1)要将原函数化为y=sin(x)再求之(2)可画出y=|sin(x+)|的图象解:(1)y=sin()=sin()故由2k2k+3kx3k+(kZ),为单调减区间;由2k+2k+3k+x3k+(kZ),为单调增区间递减区间为3k,3k+,递增区间为3k+,3k+(kZ)(2)y=|sin(x+)|的图象的增区间为k+,k+,减区间为k,k+例10已知函数f(x)=,求f(x)的定义域,判断它的奇偶性,并求其值域剖析:此题便于入手,求定义域、
10、判断奇偶性靠定义便可解决,求值域要对函数化简整理解:由cos2x0得2xk+,解得x+(kZ)所以f(x)的定义域为x|xR且x+,kZ因为f(x)的定义域关于原点对称,且f(x)=f(x),所以f(x)是偶函数又当x+(kZ)时,f(x)=3cos2x1,所以f(x)的值域为y|1y或y2评述:本题主要考查三角函数的基本知识,考查逻辑思维能力、分析和解决问题的能力小结:1数形结合是数学中重要的思想方法,在中学阶段,对各类函数的研究都离不开图象,很多函数的性质都是通过观察图象而得到的2作函数的图象时,首先要确定函数的定义域3对于具有周期性的函数,应先求出周期,作图象时只要作出一个周期的图象,就
11、可根据周期性作出整个函数的图象4求定义域时,若需先把式子化简,一定要注意变形时x的取值范围不能发生变化5求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数,且三角函数的次数为1的形式,否则很容易出现错误6函数的单调性是在定义域或定义域的某个子区间上考虑的,要比较两三角函数值的大小一般先将它们化归为同一单调区间的同名函数再由该函数的单调性来比较大小7判断y=Asin(x+)(0)的单调区间,只需求y=Asin(x+)的相反区间即可,一般常用数形结合而求y=Asin(x+)(0)单调区间时,则需要先将x的系数变为正的,再设法求之学生练习 1在(0,2)内,使sinxcosx成立的x的取值范
12、围是A(,)(,)B(,)C(,)D(,)(,)答案:C2如果函数f(x)=sin(x+)(02)的最小正周期是T,且当x=2时取得最大值,那么AT=2,=BT=1,= CT=2,=DT=1,=解析:T=2,又当x=2时,sin(·2+)=sin(2+)=sin,要使上式取得最大值,可取=答案:A3设函数f(x)=A+Bsinx,若B0时,f(x)的最大值是,最小值是,则A=_,B=_解析:根据题意,由可得结论答案: 14已知函数y=tan(2x+)的图象过点(,0),则可以是ABCD解析:将(,0)代入原函数可得,tan(+)=0,再将A、B、C、D代入检验即可答案:A5函数y=s
13、in(2x)+sin2x的最小正周期是A2BCD4解析:y=cos2xsin2x+sin2x=cos2x+sin2x=sin(+2x),T=答案:B6若f(x)sinx是周期为的奇函数,则f(x)可以是AsinxBcosxCsin2xDcos2x答案:B7函数y=2sin(2x)(x0,)为增函数的区间是A0, B, C,D,解析:由y=2sin(2x)=2sin(2x)其增区间可由y=2sin(2x)的减区间得到,即2k+2x2k+,kZk+xk+,kZ令k=0,故选C答案:C8把y=sinx的图象向左平移个单位,得到函数_的图象;再把所得图象上的所有点的横坐标伸长到原来的2倍,而纵坐标保持
14、不变,得到函数_的图象解析:向左平移个单位,即以x+代x,得到函数y=sin(x+),再把所得图象上所有点的横坐标伸长到原来的2倍,即以x代x,得到函数:y=sin(x+)答案:y=sin(x+) y=sin(x+)9函数y=lg(cosxsinx)的定义域是_解析:由cosxsinx0cosxsinx由图象观察,知2kx2k+(kZ)答案:2kx2k+(kZ)10 f(x)=2cos2x+sin2x+a(a为实常数)在区间0,上的最小值为4,那么a的值等于 A4B6C4D3解析:f(x)=1+cos2x+sin2x+a=2sin(2x+)+a+1x0,2x+,f(x)的最小值为2×
15、()+a+1=4a=4答案:C11函数y=的定义域是_解析:sin0sin02k2k6k3x6k(kZ)答案:6k3x6k(kZ)12函数y=tanxcotx的最小正周期为_解析:y=2cot2x,T=答案:13求函数f(x)=的最小正周期、最大值和最小值解:f(x)=(1+sinxcosx)=sin2x+,所以函数f(x)的最小正周期是,最大值是,最小值是14已知x,,函数y=cos2x-sinx+b+1的最大值为,试求其最小值解:y=2(sinx+)2+b,又1sinx,当sinx=时,ymax=+b=b=1;当sinx=时,ymin=15求使=sin()成立的的区间解:=sin()=(s
16、incos)sincos=sincossincos2k+2k+(kZ)因此4k+,4k+(kZ)16关于函数f(x)=sin2x()|x|+,有下面四个结论,其中正确结论的个数为f(x)是奇函数 当x2003时,f(x)恒成立 f(x)的最大值是 f(x)的最小值是A1B2C3D4解析:显然f(x)为偶函数,结论错对于结论,当x=1000时,x2003,sin21000=0,f(1000)=()1000,因此结论错又f(x)=()|x|+=1cos2x()|x|,1cos2x1,1cos2x故1cos2x()|x|,即结论错而cos2x,()|x|在x=0时同时取得最大值,所以f(x)=1co
17、s2x()|x|在x=0时可取得最小值,即结论是正确的答案:A17定义在R上的函数f(x)既是偶函数又是周期函数若f(x)的最小正周期是,且当x0,时,f(x)=sinx,则f()的值为ABCD解析:f()=f(2)=f()=f()=sin=答案:D18函数y=xcosxsinx在下面哪个区间内是增函数A(,)B(,2) C(,)D(2,3)答案:B19函数y=sin4x+cos2x的最小正周期为ABCD2解析:y=sin4x+cos2x=()2+=+=cos4x+故最小正周期T=答案:B20y=5sin(2x+)的图象关于y轴对称,则=_解析:y=f(x)为偶函数答案:=k+(kZ)21函数
18、y=xsinx+cosx在下面哪个区间内是增函数A(,)B(,2) C(,) D(2,3)答案:C22为了使y=sinx(0)在区间0,1上至少出现50次最大值,则的最小值是A98BCD100解析:49×T1,即×1,答案:B23若f(x)具有性质:f(x)为偶函数,对任意xR,都有f(x)=f(+x),则f(x)的解析式可以是_(只写一个即可)答案:f(x)=a或f(x)=cos4x或f(x)=|sin2x|等24给出下列命题:正切函数的图象的对称中心是唯一的;y=|sinx|、y=|tanx|的周期分别为、;若x1x2,则sinx1sinx2;若f(x)是R上的奇函数,它的最小正周期为T,则f()=0其中正确命题的序号是_答案:25当(0,)时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2030年烫金画项目投资价值分析报告
- 2025至2030年无机水性水泥密封防水剂项目投资价值分析报告
- 2025至2030年排水管道系统项目投资价值分析报告
- 2025至2030年幕墙铝单板项目投资价值分析报告
- it行业服务合同范本
- 施工项目年终工作总结
- 生产经营租赁合同
- 个人房屋出让合同范本
- 父母房产赠与孙子合同
- 2025年科研机构环境保护研究计划
- 教师课堂教学改进
- 七路抢答器的PLC程序设计
- 探索太空小报手抄报WORD模板
- 6.3.3 平面向量的加、减运算的坐标表示 教学设计-人教A版高中数学必修第二册
- 生猪养殖场检查表
- 《孟子》导读PPT课件
- 小区会所经营方案(开业投资分析)
- 国家自然科学奖评价指标
- 常用食物含铜量表
- (完整版)详细化学物质及其CAS注册号清单
- 科研与临床ppt课件
评论
0/150
提交评论