下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、初中圆知识点总结 学校数学圆学问点总结 1、圆是定点的距离等于定长的点的集合 2、圆的内部可以看作是圆心的距离小于半径的点的集合 3、圆的外部可以看作是圆心的距离大于半径的点的集合 4、同圆或等圆的半径相等 5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线 7、到已知角的两边距离相等的点的轨迹,是这个角的平分线 8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 9、定理不在同始终线上的三点确定一个圆。 10、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 11、推论1: 平
2、分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 12、推论2:圆的两条平行弦所夹的弧相等 13、圆是以圆心为对称中心的中心对称图形 14、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 15、推论:在同圆或等圆中,假如两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 16、定理:一条弧所对的圆周角等于它所对的圆心角的一半 17、推论:1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相
3、等 18、推论:2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 19、推论:3 假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 20、定理: 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 21、直线l和o相交 dr 直线l和o相切 d=r 直线l和o相离 dr 22、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线 23、切线的性质定理:圆的切线垂直于经过切点的半径 24、推论1 经过圆心且垂直于切线的直线必经过切点 25、推论2 经过切点且垂直于切线的直线必经过圆心 26、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等
4、,圆心和这一点的连线平分两条切线的夹角 27、圆的外切四边形的两组对边的和相等 28、弦切角定理:弦切角等于它所夹的弧对的圆周角 29、推论:假如两个弦切角所夹的弧相等,那么这两个弦切角也相等 30、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等 31、推论:假如弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 32、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 33、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 34、假如两个圆相切,那么切点肯定在连心线上 35、两圆外离 dr+r 两
5、圆外切 d=r+r 两圆相交 r-rdr+r(rr) 两圆内切 d=r-r(rr) 两圆内含 dr-r(rr) 36、定理:相交两圆的连心线垂直平分两圆的公共弦 37、定理:把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 38、定理: 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 39、正n边形的每个内角都等于(n-2)180n 40、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 41、正n边形的面积sn=pr2 p表示正n边形的周长,r为边心距 42、正三角形面积3 a24 a表示边长 43、假如在一个顶点四周有k个正n边形的角,由于这些角的和应为360, 因此k (n-2)180n=360化为(n-2)(k-2)=4 44
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒店改造合同范例范例
- 户外汽灯租赁合同范例
- 铺位 租赁合同范例
- 快递员合作合同范例
- 家具买卖贷款合同范例
- 市政材料供应合同范例
- 含司机租车合同范例
- 鞋面批发采购合同范例
- 药品合同范例格式
- 装修固定总价合同范例
- 2024-2025学年高二上学期期末数学试卷(提高篇)(含答案)
- 2025年安全生产目标实施计划
- 福建百校2025届高三12月联考历史试卷(含答案解析)
- 2024年山西省建筑安全员《B证》考试题库及答案
- 2023年益阳市安化县招聘乡镇卫生院护理人员笔试真题
- 《基于PLC的智能交通灯控制系统设计》10000字(论文)
- 首都经济贸易大学《微积分》2021-2022学年第一学期期末试卷
- 人音版音乐七年级上册《父亲的草原母亲的河》课件
- 2024年度短视频内容创作服务合同3篇
- 介入治疗并发症
- 铸牢中华民族共同体意识-形考任务1-国开(NMG)-参考资料
评论
0/150
提交评论