空间几何体的结构特征PPT课件_第1页
空间几何体的结构特征PPT课件_第2页
空间几何体的结构特征PPT课件_第3页
空间几何体的结构特征PPT课件_第4页
空间几何体的结构特征PPT课件_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第1页/共30页长方体的面长方体的棱长方体的顶点 一个几何体是由点、线、面构成的,点、线、面一个几何体是由点、线、面构成的,点、线、面是构成几何体的基本元素。是构成几何体的基本元素。第2页/共30页若干个平面多边形围成的几何体,叫多面体.围成多面体的各个多边形叫多面体的面;围成多面体的各个多边形叫多面体的面;相邻两个面的公共边叫多面体的棱;相邻两个面的公共边叫多面体的棱;棱和棱的公共点叫多面体的顶点;棱和棱的公共点叫多面体的顶点;把一个多面体的任何一个面延展为平面,把一个多面体的任何一个面延展为平面,如果其余各面都在这个平面的同一侧,则这如果其余各面都在这个平面的同一侧,则这样的多面体叫凸多面

2、体。样的多面体叫凸多面体。第3页/共30页DABCEFFAEDBC棱柱棱锥圆柱圆锥圆台棱台球结构特征结构特征 有两个面互有两个面互相平行,其余各相平行,其余各面都是四边形,面都是四边形,并且并且每相邻两个每相邻两个面的公共边都平面的公共边都平行行。第4页/共30页DABCEFFAEDBC棱柱棱锥圆柱圆锥圆台棱台球思考:倾斜后思考:倾斜后的几何体还是的几何体还是柱体吗?柱体吗?第5页/共30页DABCEFFAEDBC 有两个面互相平行,有两个面互相平行,其余各面都是四边形,其余各面都是四边形,并且每相邻两个面的公并且每相邻两个面的公共边都平行。共边都平行。(1 1)底面互相平行。)底面互相平行。

3、(2 2)侧面是平行四边形。)侧面是平行四边形。棱柱的结构特征棱柱的结构特征思考:思考:有两个面互相平行,有两个面互相平行,其余各面都是平行四边形的其余各面都是平行四边形的几何体一定是棱柱吗?几何体一定是棱柱吗?表示法FEDCBAABCDEF 棱柱思考:棱柱的任何两个平行平面都可以作为棱柱的底面吗? 第6页/共30页 有两个面互相平行,其余各边都是四边形,并且每相邻两个四边形的公共边都互相平行,这些面围成的几何体叫做。 其余各面叫做其余各面叫做棱柱的侧面棱柱的侧面。 两个互相平行的面叫做两个互相平行的面叫做棱柱的底棱柱的底面;面; 两个面的公共边叫做两个面的公共边叫做棱柱的棱棱柱的棱。两个侧面

4、的公共边。两个侧面的公共边叫做叫做棱柱的侧棱棱柱的侧棱。 与两个底面都垂直的直线夹在两底面间的线段长叫与两个底面都垂直的直线夹在两底面间的线段长叫做做棱柱的高棱柱的高。底面多边形与侧面的公共顶点叫做底面多边形与侧面的公共顶点叫做棱柱的顶点棱柱的顶点。第7页/共30页 棱柱的底面可以是三角形、四边形、五边形棱柱的底面可以是三角形、四边形、五边形我们我们把这样的棱柱分别叫做把这样的棱柱分别叫做三棱柱三棱柱、四棱柱四棱柱、五棱柱五棱柱1. 侧棱不垂直于底的棱柱叫做侧棱不垂直于底的棱柱叫做斜棱柱斜棱柱。2.侧棱垂直于底的棱柱叫做侧棱垂直于底的棱柱叫做直棱柱直棱柱。3. 底面是正多边形的直棱柱叫做底面是

5、正多边形的直棱柱叫做正棱柱正棱柱。第8页/共30页四棱柱四棱柱平行六面体平行六面体长方体长方体直平行六面体直平行六面体正四棱柱正四棱柱正方体正方体底面是底面是平行四边形平行四边形侧棱与底面侧棱与底面垂直垂直底面是底面是矩形矩形底面为底面为正方形正方形侧棱与底面侧棱与底面边长相等边长相等第9页/共30页棱柱棱锥圆柱圆锥圆台棱台球SABCD结构特征结构特征 有一个有一个面是多边形,面是多边形,其余各面都其余各面都是是有一个公有一个公共顶点共顶点的三的三角形。角形。第10页/共30页思考:思考:有一个面是多边形,有一个面是多边形,其余各面都是三角形的几何其余各面都是三角形的几何体一定是棱锥吗?体一定

6、是棱锥吗?SABCD 有一个面是多有一个面是多边形,其余各面都边形,其余各面都是有一个公共顶点是有一个公共顶点的三角形。的三角形。棱锥的结构特征棱锥的结构特征表示法ABCDS 棱锥ABCDST第11页/共30页棱锥的底面棱锥的底面棱锥的侧面棱锥的侧面棱锥的顶点棱锥的顶点棱锥的侧棱棱锥的侧棱棱锥的高棱锥的高SABCDEO(1) 一个面是多边形一个面是多边形(2) 其余各面是有一个其余各面是有一个公共顶点的三角形公共顶点的三角形第12页/共30页三棱锥三棱锥四棱锥四棱锥五五棱锥棱锥(四面体)(四面体)第13页/共30页 如果一个棱锥的底面是正多边如果一个棱锥的底面是正多边形,并且形,并且顶点在底面

7、的射影是底顶点在底面的射影是底面的中心面的中心,这样的棱锥是,这样的棱锥是正棱锥正棱锥.OSABCDE 各侧棱相等,各侧面各侧棱相等,各侧面 是全等是全等的等腰三角形,各等腰的等腰三角形,各等腰 三角形底三角形底边上的高相等(它叫做正棱锥的边上的高相等(它叫做正棱锥的斜高斜高)。)。第14页/共30页ABCDABCD 用一个平行于棱用一个平行于棱锥底面的平面去截棱锥底面的平面去截棱锥锥,底面与截面之间的底面与截面之间的部分是棱台部分是棱台.棱台的结构特征棱台的结构特征表示法DCBAABCD 棱台思考:棱台的侧棱延长后会交于一点吗? 棱台棱锥圆柱圆锥圆台棱柱球第15页/共30页 用一个平行于棱锥

8、底面的平面去截棱锥,底面与用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫作截面之间的部分叫作棱台棱台。下底面下底面上底面上底面侧面侧面侧棱侧棱高高顶点顶点第16页/共30页斜高斜高用正棱锥截得的棱台叫作正棱台。用正棱锥截得的棱台叫作正棱台。正棱台的侧面是全等的等腰梯形,正棱台的侧面是全等的等腰梯形,它的高叫作正棱台的斜高。它的高叫作正棱台的斜高。正棱锥正棱锥正四棱台正四棱台第17页/共30页一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面( )(A)至多只有一个是直角三角形(B)至多只有两个是直角三角形(C)可能都是直角三角形(D)必然都是非直角三角形C第18页/共30页 一

9、条平面曲线绕着它所在的平面内的一条一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作定直线旋转所形成的曲面叫作旋转面旋转面。封闭的旋转面围成的几何体叫作封闭的旋转面围成的几何体叫作旋转体旋转体。第19页/共30页B棱柱棱锥圆柱圆锥圆台棱台球AAOBO轴轴底面底面侧侧面面母母线线结构特征结构特征 以矩形的一边以矩形的一边所在直线为旋转所在直线为旋转轴轴,其余边旋转形其余边旋转形成的曲面所围成成的曲面所围成的几何体叫做圆的几何体叫做圆柱。柱。分类和表示法OO圆柱棱柱与圆柱统称为柱体第20页/共30页S顶点顶点ABO底面底面轴轴侧侧面面母母线线 以直角三角形的一条以直角三角形的一条直角边

10、所在直线为旋转直角边所在直线为旋转轴轴,其余两边旋转形成其余两边旋转形成的曲面所围成的几何体的曲面所围成的几何体叫做圆锥。叫做圆锥。圆锥的结构特征圆锥的结构特征思考:思考:以等腰三角形底边上的中以等腰三角形底边上的中线所在直线旋转而成的几何体也线所在直线旋转而成的几何体也叫圆锥吗?叫圆锥吗?分类和表示法SO圆锥棱锥与圆锥统称为锥体第21页/共30页OO 用一个平行于圆锥底用一个平行于圆锥底面的平面去截圆锥面的平面去截圆锥,底面底面与截面之间的部分是圆与截面之间的部分是圆台台.圆台的结构特征圆台的结构特征分类和表示法OO圆台棱台与圆台统称为台体思考:思考:标出圆台的轴、底面、侧标出圆台的轴、底面

11、、侧面、母线?圆台的母线延长后会面、母线?圆台的母线延长后会交于一点吗?交于一点吗?第22页/共30页O半径半径球心球心 以半圆的直以半圆的直径所在直线为旋径所在直线为旋转轴转轴,半圆面旋转半圆面旋转一周形成的几何一周形成的几何体体.球的结构特征球的结构特征思考:思考:切球得到的截面是什么图切球得到的截面是什么图形?形?表示法O球说明:说明:球面仅指球的表面,而球球面仅指球的表面,而球体不仅包括球的表面,同时还包体不仅包括球的表面,同时还包括求所包围的空间。括求所包围的空间。第23页/共30页想一想:想一想:用一个平面去截一个球用一个平面去截一个球,截面是什么截面是什么?O 用一个截面去用一个

12、截面去截一个球,截面截一个球,截面是圆面。是圆面。球面被经过球心的平面截得的圆叫做。球面被不过球心的截面截得的圆叫球的。第24页/共30页球、圆柱、圆锥、圆台过轴的截面分别是什么图形?球、圆柱、圆锥、圆台过轴的截面分别是什么图形?第25页/共30页HPCBDAO棱锥基本性质棱锥基本性质如果棱锥被平行于底如果棱锥被平行于底面的平面所截,那么面的平面所截,那么截面和底面截面和底面相似相似,并,并且它们且它们面积的比面积的比等于等于截得的棱锥的高与已截得的棱锥的高与已知棱锥的高的知棱锥的高的平方比平方比CBDADCBADCBASS22PHPO 第26页/共30页简单几何体简单几何体简单旋转体简单旋转体简单多面体简单多面体球球圆圆柱柱圆圆锥锥圆圆台台棱棱柱柱棱棱锥锥棱棱台台第27页/共30页练习练习.在球内有相距在球内有相距14cm 的两个平行截面,它们的面的两个平行截面,它们的面积分别是积分别是 64cm2 和和 36cm2,求球的表面积。,求球的表面积。.解:设球半径为解:设球半径为R,(1)当截面在球心同侧,如图()当截面在球心同侧,如图(1)(1)则有则有R2- -36- -R2- -64=14 而此方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论