版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-作者xxxx-日期xxxx随机事件的概率同步习题(含详细解答)【精品文档】随机事件的概率一 选择题1 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( ) A对立事件 B不可能事件 C互斥但不对立事件 D以上均不对【答案】 C【解析】 本题要区分“互斥”与“对立”二者的联系与区别,主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生 事件“甲
2、分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C2甲乙两人独立的解同一道题,甲乙解对的概率分别是,那么至少有1人解对的概率是 ( D )A. B. C. D.【答案】D【解析】:这是考虑对立事件,两人都没做对的概率为,至少有1人做对为3.甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为A B C D【答案】:D 乙【解析】:甲,乙两队分别分到同组的概率为,不同组概率为,又各队取胜概率为,甲、乙两队相遇概率为,故选. 4.(2010
3、·辽宁)两个实习生每人加工一个零件加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )(A) (B) (C) (D) 【答案】B.【解析】所求概率为。5.(2010·北京)从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则b>a的概率是( ) (A) (B) (C) (D)【答案】选D分析:先求出基本事件空间包含的基本事件总数,再求出事件“”包含的基本事件数,从而。【解析】,包含的基本事件总数。事件“”为,包含的基本事件数为。其概率。6.(2011全国课标文(6)有3个兴趣小组,甲、乙两位
4、同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )(A) () (B) (C) (D)【答案】A【解析】甲,乙两位同学参加3个小组的所有可能性有3×39(种),其中甲,乙两人参加同一小组情况有3种,故甲,乙两人参加同一个兴趣小组的概率为7.(2012高考安徽文10)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于(A) (B) (C) (D) 【答案】B【解析】1个红球,2个白球和3个黑球记为从袋中任取两球共有15种;满足两球颜色为一白一黑有种,概率等于8.(20
5、10辽宁)(3)两个实习生每人加工一个零件加工为一等品的概率分别为和,两个零件是 否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为(A) (B) (C) (D)【答案】B【解析】记两个零件中恰好有一个一等品的事件为A,则P(A)=P(A1)+ P(A2)=二 填空题1. (2009湖北卷文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是 ,三人中至少有一人达标的概率是 。【答案】××0.5=2(2010·福建高考)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续回答出两个问题,即停止答题,晋
6、级下一轮。假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于 。【解析】依题意得:该选手第一个问题可以答对也可以答错,第二个问题一定回答错误,第三、四个问题一定答对,所以其概率.三 解答题1.(2010四川文数)(17)某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为.甲、乙、丙三位同学每人购买了一瓶该饮料。()求三位同学都没有中奖的概率;()求三位同学中至少有两位没有中奖的概率.分析:由题设可知三位中奖的概率,由相互独立事件同事发生求得都没有中奖的概率。先
7、算出都没中奖和只有一人中奖的概率,再由对立事件求得。解:()设甲、乙丙中奖的事件分别为A,B,C,那么答:三位同学都没有中奖的概率是()答:三位同学中至少有两位没有中奖的概率为 2.(2011湖南文18)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份是我降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5已知近20年X的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160. ()完
8、成如下的频率分布表近20年六月份降雨量频率分布表降雨量70110140160200220频率 ()假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率分析:由已知易填表。再由视为概率求得所求结果。解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为降雨量70110140160200220频率 (II)P(“发电量低于490万千瓦时或超过530万千瓦时”) 故今年六月份该水力发电站的发电量低于490(万千瓦时)
9、或超过530(万千瓦时)的概率为3、(2011四川文17)本着健康、低碳的生活理念,租自行车骑游的人越来越多某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算)有甲、乙人互相独立来该租车点租车骑游(各租一车一次)设甲、乙不超过两小时还车的概率分别为、;两小时以上且不超过三小时还车的概率分别为、;两人租车时间都不会超过四小时()分别求出甲、乙在三小时以上且不超过四小时还车的概率;()求甲、乙两人所付的租车费用之和小于6元的概率分析:利用相互独立事件、互斥事件等概念及相关概率计算解:()分别记甲、乙在三小时以上且不超过四小时还
10、车为事件A、B,则,答:甲、乙在三小时以上且不超过四小时还车的概率分别为、()记甲、乙两人所付的租车费用之和小于6元为事件C,则答:甲、乙两人所付的租车费用之和小于6元的概率为4.(2011全国课标文19)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数82042228B配方的频数分布表指标值分组90,94)94,98)9
11、8,102)102,106)106,110频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润分析:(I)由表可计算出A和B配方优质产品的频率即可。由所给的函数关系式即可算出平均一件的利润。解析:()由试验结果知,用A配方生产的产品中优质的频率为,所以用A配方生产的产品的优质品率的估计值为0.3由试验结果知,用B配方生产的产品中优质品的频率为()由条件知用B配方生产的一件产品的利润大于0当且仅当其质量指
12、标值t94,由试验结果知,质量指标值t94的频率为0.96,所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.用B配方生产的产品平均一件的利润为(元)5(2010陕西文数19) 为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:()估计该校男生的人数;()估计该校学生身高在170185cm之间的概率;(从样本中身高在180190cm之间的男生中任选2人,求至少有1人身高在185190cm之间的概率。分析:由频率分布直方力可知人数及在区间170185cm的概率,最后由古典概率求得即可。解 ()样本中男生人数为40 ,由分层出样比例为
13、10%估计全校男生人数为400。()有统计图知,样本中身高在170185cm之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170185cm之间的频率故有f估计该校学生身高在170180cm之间的概率()样本中身高在180185cm之间的男生有4人,设其编号为, 样本中身高在185190cm之间的男生有2人,设其编号为 从上述6人中任取2人的树状图为:故从样本中身高在180190cm之间的男生中任选2人得所有可能结果数为15,求至少有1人身高在185190cm之间的可能结果数为9,因此,所求概率6【2012高考新课标文18】某花店每天以每枝5元的价格从农场购进
14、若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.()若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,nN)的函数解析式. ()花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.分析:先求出函数解析式再求平均数和概率问题。【解析】()当日需求
15、量时,利润=85;当日需求量时,利润,关于的解析式为;()(i)这100天中有10天的日利润为55元,20天的日利润为65元,16天的日利润为75元,54天的日利润为85元,所以这100天的平均利润为=76.4;(ii)利润不低于75元当且仅当日需求不少于16枝,故当天的利润不少于75元的概率为7.【2102高考北京文17】近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃
16、圾400100100可回收物3024030其他垃圾202060()试估计厨余垃圾投放正确的概率;()试估计生活垃圾投放错误额概率;()假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为其中a0,=600。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。(注:,其中为数据的平均数)分析:先利用古典概率求法求出厨余垃圾的概率,再利用对立事件求解生活垃圾投放错误的概率。解:()“厨余垃圾”投放正确的概率约为()设生活垃圾投放错误为事件A,则事件表示生活垃圾投放正确。事件的概率约为“厨余垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即约为,所以P(A)约为()当时,
17、取得最大值。因为所以8、【2012高考湖南文17】某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)302510结算时间(分钟/人)123已知这100位顾客中的一次购物量超过8件的顾客占55.()确定x,y的值,并估计顾客一次购物的结算时间的平均值;()求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)分析:()利用条件求x,y值,再求平均值。()利用互斥事件及概率一般加法公式即可求出解析:()由已知得,该超市所有顾客一次购物的结算时间组成一个
18、总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:(分钟).()记A为事件“一位顾客一次购物的结算时间不超过2分钟”,分别表示事件“该顾客一次购物的结算时间为1分钟”, “该顾客一次购物的结算时间为分钟”, “该顾客一次购物的结算时间为2分钟”.将频率视为概率,得.是互斥事件,.故一位顾客一次购物的结算时间不超过2分钟的概率为.【点评】本题考查概率统计的基础知识,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55,知从而解得,再用样本估计总体,得出顾客一次购物的结算时间的平均值的估计值;第二问,通过设事件,判断事件之间互斥关系,从而求得一位顾客一次购物的结算时间不超过2分钟的概率.9.【2012高考全国文20】乒乓球比赛规则规定:一局比赛,双方比分在平前,一方连续发球次后,对方再连续发球次,依次轮换。每次发球,胜方得分,负方得分。设在甲、乙的比赛中,每次发球,发球方得分的概率为,各次发球的胜负结果相互独立。甲、乙的一局比赛中,甲先发球。()求开始第次发球时,甲、乙的比分为比的概率;()求开始第次发球时,甲得分领先的概率。分析:利用互斥事件至少有一个发生的概率公式和相互独立事件同时发生的概率公式求解。解析:10.【2012高考重庆文1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业合同范本查询与咨询服务
- 2024年公司食堂餐饮服务标准协议版
- 广播电视台开荒保洁施工合同
- 2024年度停车场经营管理合同3篇
- 邯郸市二手车市场租赁合同
- 宾馆单元门定制合同
- 滑雪道建设平地机租赁协议
- 写字楼抹灰施工协议
- 保险业务员招聘合同
- 管道工程劳务分包协议
- 玄武岩类课件
- 钢箱梁施工安全要点说明课件
- 国开政治学原理第9章自检自测试题及答案
- 小学英语外研新标准四年级上册Module教学反思
- 2009-2022历年上海市松江区社区工作者招聘考试《综合素质能力测验》真题含答案2022-2023上岸必备带详解版3
- 赣美版七年级上册美术《第8课传统纹样》(一等奖课件)
- 年产15万吨PET的生产工艺设计-
- (完整word版)mbti完整93题+计分
- 电力企业今冬明春安全生产和火灾隐患排查整治方案
- 硫酸安全技术说明书MSDS
- 城市轨道交通服务员职业技能大赛理论试题库
评论
0/150
提交评论