版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 一元一次不等式组测试题(提高)一、选择题1如果不等式的解集是x2,那么m的取值范围是( ) Am2 Bm2 Cm2 Dm22(贵州安顺)若不等式组有实数解则实数m的取值范围是 ( ) A B C D3若关于x的不等式组无解,则a的取值范围是 ( ) Aa1 Bal C1 Da14 关于x的不等式的整数解共有4个,则m的取值范围是 ( )A6m7 B6m7 C6m7 D6m75某班有学生48人,会下象棋的人数比会下围棋的人数的2倍少3人,两种棋都会下的至多9人,但不少于5人,则会下围棋的人有 ( ) A20人 B19人 C11人或13人 D20人或19人6某城市的一种出租车起步价是7元(即在3
2、km以内的都付7元车费),超过3km后,每增加1km加价1.2元(不足1km按1km计算),现某人付了14.2元车费,求这人乘的最大路程是( ) A10km B9 km C8km D7 km 7不等式组的解集在数轴上表示为 ( )8解集如图所示的不等式组为( )A B C D二、填空题1.已知,且,则k的取值范围是_2 某种药品的说明书上,贴有如右所示的标签,一次服用这种药品的剂量设为x,则x范围是 .3如果不等式组的解集是0x1,那么a+b的值为_4将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_个儿童,_个橘子5对于整数a、b
3、、c、d,规定符号已知 则b+d的值是_6. 在ABC中,三边为、,(1)如果,那么的取值范围是 ;(2)已知ABC的周长是12,若是最大边,则的取值范围是 ;(3) 7. 如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围为 三、解答题13.解下列不等式组(1) (2) (3) (4)14.已知:关于x,y的方程组的解是正数,且x的值小于y的值 (1)求的范围; (2)化简|8+11|-|10+1|15. 试确定实数a的取值范围使不等式组 恰好有两个整数解16,一件商品的成本价是30元,若按原价的八八折销售,至少可获得的利润;若按原价的九折销售,可获得不足的利润
4、,此商品原价在什么范围内?17.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件 (1)求饮用水和蔬菜各有多少件? (2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件 (3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元运输部门应选择哪种方案可使运费最少?最少运费是多少元?18. 不等式组是否存在整数解?如果存在请求出它的解;如果不存在要说明理由.19,“5.12”四川
5、地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作 拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李(1) 设租用甲种汽车x辆,请你设计所有可能的租车方案;(2) 若甲、乙汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案 【答案与解析】一、选择题1. 【答案】D ;【解析】原不等式组可化为,又知不等式组的解集是x2根据不等式组解集的确定方法“同小取小”可知m22. 【答案】A;【解析】原不等式组可化为而不等式组有解,根据不等式组解集
6、的确定方法“大小小大中间找”可知m3. 【答案】B; 【解析】原不等式组可化为根据不等式组解集的确定方法“大大小小没解了”可知a14. 【答案】D; 【解析】解得原不等式组的解集为:3xm,表示在数轴上如下图,由图可得:6m75. 【答案】D; 6. 【答案】B;7,A 8,A 【解析】设这人乘的路程为xkm,则137+1.2(x-3)14.2,解得8x9.二、填空题1. 【答案】k1;【解析】解出方程组,得到x,y 分别与k的关系,然后再代入不等式求解即可 2. 【答案】10x30;3.【答案】1 【解析】由不等式解得x42a由不等式2x-b3,解得 0x1, 4-2a0,且, a2,b-1
7、 a+b14【答案】7, 37;【解析】设有x个儿童,则有0(4x+9)-6(x-1)35.【答案】3或-3 ;【解析】根据新规定的运算可知bd2,所以b、d的值有四种情况:b2,d1;b1,d2;b-2,d-1;b-1,d-2所以b+d的值是3或-36,【答案】(1) 4x28 (2)4b6 (3)2a;7【答案】1m2; 三、解答题13.解:(1)解不等式组解不等式,得x5,解不等式,得x-4因此,原不等式组无解(2)把不等式进行整理,得,即,则有或解不等式组得;解不等式组知其无解,故原不等式的解集为. (3)解不等式组解得:,解得:,解得:,将三个解集表示在数轴上可得公共部分为:x所以不
8、等式组的解集为:x(4) 原不等式等价于不等式组:解得:,解得:,所以不等式组的解集为:14. 解:(1)解方程组,得14,根据题意,得 解不等式得解不等式得5,解不等式得,的解集在数轴上表示如图 上面的不等式组的解集是(2) 8+110,10+10 |8+11|-|10+1|8+11-(10+1)8+11+10+118+1215,解:由不等式,分母得3x+2(x+1)0,去括号,合并同类项,系数化为1后得x由不等式去分母得3x+5a+44x+4+3a,可解得x2a所以原不等式组的解集为,因为该不等式组恰有两个整数解:0和l,故有:12a2,所以:16,解:设这件商品原价为元,根据题意可得:解
9、得:答:此商品的原价在元(包括元)至40元范围内17.解:(1)设饮用水有x件,蔬菜有y件,依题意,得解得 所以饮用水和蔬菜分别为200件和120件 (2)设租用甲种货车m辆,则租用乙种货车(8-m)辆依题意得 解得2m4又因为m为整数,所以m2或3或4所以安排甲、乙两种货车时有3种方案设计方案分别为:2×400+6×3602960(元);3×400+5×3603000(元);4×400+4×3603040(元)所以方案运费最少,最少运费是2960元18,解:解不等式(1),得:x2;解不等式(2),得:x-3;解不等式(3),得:x-2;在数轴上分别表示不等式(1)、(2)、(3)的解集:原不等式组的解集为:-2x2.原不等式组的整数解为:-2、-1、0、1.19,解:(1)设租用甲种汽车x辆,则租用乙种汽车,则:,解得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度网络安全防护系统建设公司正规合同3篇
- 二零二五年度公司对公司展览展示空间租赁合同3篇
- 2025年度生物科技企业职工招聘与生物多样性保护合同3篇
- 二零二五年度矿产资源开发承包合同3篇
- 养老院院民2025年度社区活动出行安全协议3篇
- 2025年度建筑材料供货与建筑节能改造合同3篇
- 二零二五年度全屋衣柜定制及安装一体化合同3篇
- 二零二五年度文化创意产业合伙合同协议3篇
- 2025年度企业合规管理委托代理合同3篇
- 2025年度全新出售房屋买卖智能家居集成协议3篇
- 2023瑞幸员工合同协议书
- 大气数据测试仪校准规范
- 升降柱 施工方案
- 堤防工程施工规范
- 成品出货检验报告模板
- 蓝色手绘风美术学硕士毕业论文答辩ppt模板
- 锅炉使用记录三张表
- 五年级上册书法教学设计-7《点与撇的分布》 湘美版
- 产品安规认证知识培训课件
- 2023年湘潭市农村信用社(农村商业银行)招聘员工参考题库附答案解析
- 医院职能科室管理考核标准
评论
0/150
提交评论