中小学统计及其课程教学设计(1)_第1页
中小学统计及其课程教学设计(1)_第2页
中小学统计及其课程教学设计(1)_第3页
中小学统计及其课程教学设计(1)_第4页
中小学统计及其课程教学设计(1)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、  中小学统计及其课程教学设计(1)   摘要:统计已经成为当今中小学数学课程的核心内容之一。统计学的研究基础是数据,依据数据进行分析和推断。统计教育价值的核心在于逐步养成尊重事实、通过数据来分析问题的习惯,培养理解和把握随机现象的能力。中小学统计课程设计、教学设计的主线应该是,体现从收集数据到统计推断的全过程,建立统计直观。关键词:中小学统计;课程设计;教育价值;教学 当今中小学数学增加了统计学和概率论的内容,这些内容是一种“不确定性数学”内容,与传统的“确定性数学”内容有较大区别。这使得数学教育工作者以及在教学一线的广大教师普遍感到不适应。

2、统计的基本思想方法是什么?解决统计问题的基本途径是什么?中小学统计课程、教学中应当突出的重点是什么?中小学统计的教育价值是什么?带着这些迷茫和困惑,我们进行了较长时间的专题访谈和深入研讨。访谈对象:史宁中教授(以下简称史教授)。访谈形式:专题访谈,三人对话以及多人参加的讨论班式的访谈;辅以资料查询。一、统计及其基本思想与方法(一)什么是统计学问:一般认为,“统计学”这个词源于拉丁语的“国情学”,原是国家管理人员感兴趣的事情。大不列颠百科全书对统计学下的定义是:“统计学是关于收集和分析数据的科学和艺术。”陈希孺院士认为:“统计学是有关收集和分析带有随机性误差的数据的科学和艺术。”史宁中教授,作为

3、统计学家,您是如何认识统计学的? 史教授:我们先来简单地回顾统计学的历史是有益处的。正如拉丁语所说,统计原本就是收集和分析国家管理中需要的各种数据,比如国民收入、各种税收。为了直观,人们才发明了各种报表、直方图、扇形图等等。可以看到,这种传统意义上的统计学现在仍然是非常重要的,这也是我们现在小学统计教学中的主要内容之一。后来到了14世纪左右,随着航海业在欧洲兴起,航海保险业开始出现。为了合理地确定保险金与赔偿金,需要了解不同季节、不同路线航海出现事故的可能性的大小,需要收集相关的数据,根据数据进行分析和判断,这被称为是近代统计学的发端。到了19世纪末、20世纪初,人们把数学、特别是概率论的有关

4、知识引入到统计学,构建了统计学的基础。与古典统计学相比,虽然二者都是对于数据的收集和分析,但是却有本质的不同,因为后者进行分析的基础是“不确定性”,我们称之为“随机”。到了现代,人们发现,对于大量数据的分析,采用随机的方法不仅方便而且准确。比如,对于国民收入,我们可以动用大量的人力来收集数据,但是谁都知道这样的数据不可能是准确的,远不如我们依据某种原则划分出地区和人群,然后抽样、加权求和准确。再比如,对于股票市场,一天交易之后,可以得到精确的交易总量,但是人们宁可用部分核心企业的股票交易量来反映股票的变化,这便是“恒生指数”“上证指数”等等。特别是到了21世纪,银行、保险、电信,以及材料科学、

5、基因组学等新兴学科的实验中涉及大量数据,其分析更需要借助随机方法了。我想,大概就是因为这些原因,国家才决定在现在中小学数学的教学中加入统计学的内容。因此,你们谈到的关于统计学的定义都是可以的。但是,要把握统计学的根本思想方法却是非常困难的。问:那么,您认为统计学的基本思想方法是什么呢? 史教授:这是一个不容易回答的问题。对于统计学的掌握很大程度上依赖于“感悟”,需要较长时间的理解与实践。我们先来回顾一下中小学传统数学的教学内容。这些内容主要是对日常生活中见到的图形和数量的抽象,研究的问题是图形的变化与计算法则,研究的基础是定义和假设,研究的方法主要是归纳、递归、类比和演绎推理。统计学则不同。如

6、我上面谈到的,统计学是通过数据来进行分析和推断的。因此,统计研究的基础是数据。这些数据的特点是,对于每一个数据而言,都具有不确定性,我们需要抽取一定数量的数据,才可能从中获取信息。因此,统计学的研究依赖于对数的感悟,甚至是对一堆看似杂乱无章的数的感悟。通过对数据的归纳整理、分析判断,可以发现其中隐藏的规律。因为可以用各种方法对数据进行归纳整理、分析判断,所以,得到的结论也可能是不同的。而且,我们很难说哪一种方法是对的,哪一种方法是错的,我们只能说,能够更客观地反映实际背景的方法要更好一些。比如,我们希望知道某公司员工的收入情况,可以用平均数也可以用中位数,很难说哪个方法对哪个方法错。事实上,如

7、果收入比较均衡,用平均数要好一些;如果收入比较极端,用中位数要好一些。当然,最好的方法是对收入情况进行分类,但是分类的方法又有好坏之分。我们可以看到,统计学关心更多的是好与不好,而中小学传统数学关心更多的是对与错。因此,统计学的基本思路是,根据所关心的问题寻求好的方法,对数据进行分析和判断,得到必要的信息去解释实际背景。(二)统计学的研究对象问:我们对于统计学有了一定的了解。从您的谈话中我们感觉到,统计学似乎是包罗万象的。那么,统计学到底研究什么呢? 史教授:是这样的,统计学的应用面非常广,凡是涉及数据分析的都可以成为统计学的研究领域。特别是到了近代,人们希望更加精细地了解实际背景,更多地借助

8、数据分析,甚至人文科学也是如此,并且逐渐形成了专业的研究领域,比如计量经济学、计量社会学、计量教育学、计量心理学等等。这些研究领域分析方法的基础大体是统计学。统计学并不研究某一个领域的具体内容,在本质上只是研究数据分析的方法,这包括创造新的方法,也包括分析方法的好坏、分析方法的适用条件。问:你能否结合中小学统计的内容谈得更具体一些?特别是,在统计教学过程中,应当把握的基本原则是什么呢? 史教授:可以。在统计研究中首先遇到的问题是如何获取“好”的数据。所谓“好”的数据是指那些能够更加客观地反映实际背景的数据,而要获取得好的数据则要依赖于“好”的方法。根据数据的不同,方法主要分两大类,一是通过调查

9、收集数据,二是通过实验制造数据。中小学统计教学中涉及的主要是前者,称为抽样调查(而后者通常被称为实验设计)。抽样调查又包含两个方面,一个是对已经存在的数据的收集,称之为抽样,比如市场的物价、学生的身高、企业的产值等等;另一个是需要我们了解才能够获取的,称之为调查,比如美国总统的民意支持率、人们日常消费的主要项目、中小学生喜欢的歌手等等。根据问题的不同,所要采用的方法也可能不同,但是要建立两个基本原则。第一个基本原则是,采用能够获取“好”的数据的方法。为了获取好的数据,我们需要尽可能多地利用对于实际背景已有的先验知识。比如,希望知道学生的身高,先验知识是“年龄之间差别很大”。因此,最好是根据年龄

10、段学生数的多少按比例抽取样本,我们称这种方法为“分层抽样”。可以看到,统计方法的直观想法是很明显的。如果对于实际背景一无所知,那么,一定要随意抽取样本,这便是“随机抽样”。比如,希望知道学生喜欢的歌手,因这些学生年龄之间差别可能不大,就可以采取“随机抽样”。当然,也可以用“分层抽样”,但是要麻烦得多。第二个基本原则是,采用简单的方法。能够基于上述两个原则的方法就是一个“好”方法。我们不要小看第二个原则,一个好的方法往往能够节省很多调查经费。这就是为什么咨询公司非常欢迎统计学家的原因。问:刚才你提到了“样本”,许多教师对这个概念总是感到费解。 史教授:是的,这个概念很难把握。样本实质上就是数据,

11、但是,统计学中涉及的数据往往是具有随机性的。还是回到“学生的身高”这个问题上来。在抽样之前,我们并不可能知道具体数据的大小,这些数据对于我们是随机的;为了讨论出一个好的方法,我们假想能够得到这些数据,并且假想这些数据的出现是依据某种规律的,这种规律就是数据出现的可能性的大小,我们称之为“概率”。比如,高年级学生出现大数据(高个子)的可能性要大于低年级学生,就是说,出现大数据的概率要大。但是,只有当抽样之后,我们才能得到真实的数据,才能进行实质的计算与分析。这样,我们所要研究的数据既具有随机性又具有真实性。为了方便起见,我们称这样的数据为样本。问:根据你的阐述,统计学怎么有一些哲学式的思考呢?

12、史教授:你们理解到了根本。这是统计学与中小学传统数学的最大区别。传统数学可以根据假设和规定的原则进行计算或者推理,但是统计学往往要问你所采用的方法是不是有道理,是不是还有更为合理的方法。不过,传统数学是统计学不可缺少的工具。问:是不是因为统计学需要计算呢? 史教授:不仅仅如此,判断统计方法的好坏很大程度上也是依赖传统数学的。问:你能不能结合中小学统计课程、教学,谈得更具体一些? 史教授:可以。假如我们得到了数据,由于数据看起来是杂乱无章的,就需要进行必要的整理,整理的实质是对大量的数据进行“压缩”。根据问题的不同,压缩的方法也有所不同。比如,希望知道学生的平均身高,称之为“总体均值”。我们可以

13、计算样本的平均数,然后用样本的平均数去估计总体均值。样本平均数就是对于数据的一种压缩方法。当然还可以用其他的方法,比如计算中位数,或者计算最大数和最小数的平均数。那么,哪一个方法要好一些呢?虽然我刚才谈了平均数和中位数的使用条件,但这仅仅是一种描述性的。对于数据压缩也有一个原则,就是不能失去我们所要研究问题的信息,满足这个条件的压缩后的值被称为“充分统计量”。这个原则的数学表达需要借助“条件概率”,涉及很深的数学。因此,统计学需要哲学的思考,也需要严格的数学推理。事实上,对于总体均值,上面的三个压缩后的量中只有样本平均数是充分统计量。直观地想,样本平均数以局部的特征估计总体的特征,可能要好一些

14、。这是因为,虽然样本平均数依赖样本的选取也是随机的,但是我们可以想象,当我们反复取样本计算时,这些样本平均数应当在总体均值附近摆动。当然,我们还可以建立其他的准则来判别方法的好坏,只要这个准则是合理的。比如,我们可以验证,样本平均数是使“与所有数据差的平方的和达到最小”的数;样本中位数是使“与所有数据差的绝对值的和达到最小”的数。这两个准则都是有道理的。转贴于 因此,作为教师,在统计课程实施的过程中,不仅仅需要知道如何去计算,还需要知道之所以这样计算的道理。只有这样,在讲课的时候才可能心里更有底,才可能根据学生的反应随时调节教学策略。再比如统计图表,是为了更直观地表达数据,这也是数据整理的一种

15、形式。根据我们所要研究问题的不同,表达方式也可以有所不同。(三)统计学研究方法的本质问:严士健先生认为,统计学的研究方法与传统数学的研究方法有一个本质上的不同:统计学的研究方法是基于归纳,而传统数学是基于演绎。 史教授:我想,这是从思辨的角度来考虑的。一般来说,推理分为演绎和归纳。上面已经谈到,传统数学在本质上研究的问题是确定性的,基础是定义和假设,遵循约定原则进行严格的计算或者推理,因此更多的是演绎;统计学在本质上研究的问题是随机的,是非确定性的,通过较多的数据进行推断,也就是通过许多的个别来推断一般,可以认为是一种归纳。但是,正如我在上面也谈到过的那样,在许多情况下,哲学思考后的数学表达也

16、是严格依赖于演绎的。二、中小学统计课程设计的核心问题(一)统计与概率课程设计的总体构想问:标准标准指全日制义务教育数学课程标准(实验稿)。在总体目标中提出,要使学生能够“经历提出问题、收集和处理数据、作出决策和预测的过程,掌握统计与概率的基础知识和基本技能,并能解决简单的问题;经历运用数据描述信息、作出推断的过程,发展统计观念”。在课程实施中,许多在教学一线的教师,甚至学科教学的专家都感到统计的内容安排不好把握,甚至对标准关于统计的设计提出了一些质疑。作为统计学家,你认为如何设计中小学各学段的统计课程内容更合理呢? 史教授:对中小学统计课程内容的设计,我没有进行过专门的研究。我想,在讨论这个问

17、题之前,首先要清楚的问题是,除了知识之外,统计学的教育功能是什么?或者说,统计学的教育价值是什么?问:在中小学阶段,统计学的教育价值是什么呢? 史教授:我在上面都已经谈到了,现在再总结一下。主要有三点。首先,养成通过数据来分析问题的习惯。其实质是通过事实来分析问题,当遇到问题时,应当去调查研究,应当去收集数据,在此基础上进行的推断才可能客观地反映实际背景。其次,建立随机的概念。有些事情可能发生,有些事情可能不发生,这在日常生活中是大量存在的。即便如此,只要我们掌握的信息多了,也能够合理地推断实际背景。第三,学习如何去判断事情的主要因素。我已经谈到,统计学能够在一堆看似杂乱无章的数据中提炼信息、

18、寻找规律,这就需要抓主要因素。比如我刚才谈到的股票市场的例子,核心企业就是主要因素。在统计学中,可能还有其他方面的教育价值,但在中小学阶段统计的教育价值主要就是这三点。问:如何通过这三点来说明中小学统计内容的课程、教学设计呢?史教授:教育价值,或者说教育功能是进行课程、教学设计的灵魂,是课程、教学设计的核心目标。如果中小学统计学课程、教学设计的核心目标是培养学生“通过数据来分析问题”,课程、教学设计的总体框架就应当是,体现从收集数据到分析推断的全过程,并以这个过程为主线,抓住要点,循序渐进。我们以小学统计为例, 在第一学段(13年级),可以侧重于统计直觉的培养。首先,应该对数有一定的理解和感悟

19、,这主要是数的大小的比较,以及对于数的分类。后者对于学习现代数学和现代统计学都是重要的,但是过去我们很少接触。比如,我们可以让学生“建立一个原则,在这个原则下给全班同学分类”。显然分类方法是多种多样的,这个原则可以是男女、出生月份、家庭区域等等。再比如,把全国各省的gdp统计数据提供给学生,让学生根据gdp的多少对各个省进行分类,并讲出分类的标准。其实,这里也涉及抓主要因素的问题,分类的标准就是抓主要因素。其次,学习一些抽样的方法,最好针对身边的事情。比如,同学们的身高、脚的大小、睡觉的时间等等。在这其中可以得到一些趣味性的结果。可以学习平均数,也可以学习统计表、直方图等等。最后,可以学习分层

20、抽样,并且通过比较,领会分层抽样的好处。因为有了数据的分类的基础,学习分层抽样就比较自然了。在第二学段(46年级),可以有一些具有背景的理性的思考。比如,再进行学生身高的调查,然后与以前的数据比较,看身高的变化,其中可以得到许多有趣的学习:可以作直方图或折线图,然后比较;可以分类比较;可以通过斜率来分析变化率;甚至可以通过变化率来预测未来。除此之外,还要进行社会调查,比如市场物价调查,评估物价的上升还是低落,这里也涉及抓住主要因素的问题。在这个阶段,可以渗透随机和概率的思想,分清楚有些事情可以直接判断可能性的大小,有些事情则需要调查估计可能性的大小。可以涉及加权平均。中位数和众数的学习一定要结

21、合具体的案例进行学习,并且与平均数比较,这是因为中位数和众数在日常生活中用得不多。最好有一个案例能够贯穿小学统计教学的全过程,比如我刚才谈到的身高的调查分析,让学生积累调查记录,逐年比较,从而对统计的学习有一个整体的了解。(二)处理统计与概率关系的策略问:在中小学数学课程教学中,应当如何处理统计与概率的关系? 史教授:概率论与统计学有很大的差别。虽然二者都研究随机现象,但概率论的研究基础还是定义和假设,这与传统数学很相似,而统计学的研究基础是数据,它的研究要借助概率论的结果。比如我刚讲到的“分清楚有些事情可以直接判断可能性的大小,有些事情则需要调查估计可能性的大小”,前者是概率计算,而后者是统

22、计推断。在小学阶段,概率所涉及的形式化数学知识很少,只需要很好地理解分数。我曾经在前面的访谈中讲到,真分数有两个含义:一个是0与1之间的实数,一个是比率。后者可以理解为概率。如果再懂得一些代数知识,就能够理解概率中的逻辑运算和计算的基本原理。中学的统计教学也涉及分数,也是借助比率的含义,也是表示事件发生可能性的大小。但是,在统计的计算中,分数是基于样本计算出来的,是与样本量的大小有关系的,在计算的过程中必须注意到这一点。比如,希望了解学生对某一项活动的支持率,一班有50人,10人赞同,支持率为;二班有45人,15人赞同,支持率为,那么总体支持率是否为(+)÷2=呢?不是的。应当考虑样本量的比例和,则总体支持率为,大约为。这就是加权平均,权为样本量的比例。当然也可以用来进行计算。两个计算都是合理的,因为都考虑到了样本量。但是前一个式子已经不需要样本的具体数据了,因而是更为深刻的。从知识的角度来看,统计学的研

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论